CIGAR: Utility Perspective and User Interface

david.pinney@nreca.coop, ryan.mahoney@nreca.coop, lisa.slaughter@nreca.coop

March 17, 2021

America's Electric Cooperatives

- Serve 42 million people in 47 states through 65 generation & transmission (G&T) co-ops and 840 distribution co-ops
- Own and maintain 42% of the nation's distribution lines
- Average 7.4 consumers per mile of distribution line
- NRECA is a trade association serving the cooperatives through government relations, pension and healthcare services, research, etc.

Cooperative Power Supply Structure with Inverters

- Hierarchical supply system.
- DERs can go pretty much anywhere.
- Distribution coops typically limited to 5% DER production contractually, storage counting against this limit.
- ITC for solar + storage.
- Storage PPAs gaining popularity.
- Very rare for consumers and distribution coops to access IPPs and the market.
- Behind-the-meter: ideal deployment location?

Motivation for DER Cybersecurity

- Inverter Cyberattacks:
 - Demonstrated in the lab,
 - Executed on the grid,
 - Other nations have access to US infrastructure,
 - Large (800k) firmware updates becoming common
- IEEE1547: From 12 pages to over 100.
- Energy storage deployment and hence inverter deployment is growing +100% annually. EIA 2021 projected additions to right.
- When DERs are deployed we need to know:
 - What inverter settings could destabilize the distribution system for a given circuit.
 - Given a set of hacked devices, what control actions on non-hacked devices could mitigate the destabilizing behavior of the hacked devices.

The PyCIGAR user interface: cyberInverters

- cyberInverters: OMF.coop model that utilizes pycigar simulation tool to show the effects of different attack/defense agents on a distribution grid over a certain time period.
- Our key user: chief distribution planning engineer.

Framework Approach – <u>https://OMF.coop</u>

- Free and open source electric utility modeling software
- Built over the last 6 years by the co-ops and the US Department of Energy
- Python backend and support libraries, light web-based frontend
- Main focus: applications that perform financial and engineering analysis for utilities on emerging technologies (solar, energy storage, networked controls)
- Secondary focus: environment for researchers to develop new models
- Users from 217 organizations (utilities, vendors, universities) as of July 2019

Deep Reinforcement Learning

- Smart *agents* in LBL's pycigar control inverters in the simulation to intelligently counter malicious behavior of hacked devices.
- Agents gain their intelligence through training over millions of scenarios using *deep reinforcement learning*.
- Deep reinforcement learning has been hugely successful in other fields (super-human results in game playing, self-driving cars, facial recognition protein folding, etc.)
- Attacks can also be defined as agents to make training more rigorous (spy-versus-spy).

cyberInverters Model Inputs

"System Specifications" Section

- **Simulation Start Date** The date and time at which the simulation begins.
- **Simulation Length** and **Units** The length of time the simulation will span and the associated units.
- **Feeder** "Open Editor" button redirects user to a visual editor of the feeder circuit input.
- **OpenDSS Editor** "Open Editor" button redirects user to a text editor of the .dss circuit definition file.
- Load and PV Output Allows user to upload a .csv containing distributed load and solar generation data at each simulation timestep.
- Breakpoints File Input Allows user to upload a .csv defining each inverter's volt-var curve.
- **Miscellaneous File Input** Allows user to upload a file containing hyperparameter definitions for the pycigar tool.
- **Battery File Input** Future functionality. Allows user to upload a .csv defining batteries at various loads.

Model Type Help?		Model Name		User	
	cyberInverters	ba	ttery_test_ieee3		adm
Created		Run Time			
2021-03-01 09:03:06:26			0:00:15		
System Specifications					
Simulation Start Date (YYY	Y-MM-	Circulation Longeth		Cimulation Langth Units	
2019-2019	07-01T00:00:00Z	Simulation Length	750	Seconds	
Feeder Open Editor		OpenDSS Editor Open Editor		Load and PV Output Choose File load_solar_data_850.cc	:SV
Breakpoints File Input Choose File breakpoints.csv		Miscellaneous File Input Choose File misc_inputs.csv		Battery File Input Choose File battery_inputs_cent.txt	
Cyber Attack Specificati	ons				
Attack Agent Variable		Hack Percentage		Defense Agent Variable	
Peak Shaving	~		30	None	
Train?					

cyberInverters Model Inputs

"Cyber Attack Specifications" Section:

- Attack Agent Variable Allows selection of different predetermined attack agents that simulate an attack on the circuit.
 - None (Default)
 - Voltage Oscillation
 - Voltage Imbalance
- Hack Percentage Limits attack agent penetration to a random subset of the inverters on the circuit.
- **Defense Agent Variable** Allows selection of any existing pre-trained defense agents.
- **Train?** Allows the user to create a defense agent that can be used against a specific attack.
 - Yes Trains a new defense agent using selected simulation specifications.
 - Saved as a file within the OMF model directory.

Open Modeling Framework » Model "battery_test_ieee3"							
Model Input							
Model Type Help?	Model Name	User					
cyberInverters	battery_test_ieee3	admin					
Created	Run Time						
2021-03-01 09:03:06.268296	0:00:15						
System Specifications							
Simulation Start Date (YYYY-MM- DDTHH:mm:SSZ)	Simulation Length	Simulation Length Units					
2019-07-01T00:00:00Z	750	Seconds ~					
Feeder Open Editor	OpenDSS Editor Open Editor	Load and PV Output Choose File load_solar_data_850.csv					
Breakpoints File Input Choose File breakpoints.csv	Miscellaneous File Input Choose File misc_inputs.csv	Battery File Input Choose File battery_inputs_cent.txt					
Cyber Attack Specifications							
Attack Agent Variable	Hack Percentage	Defense Agent Variable					
Peak Shaving ~	30	None 🗸					
Train?							
No 🗸							
		Delete Run Model Share Duplicate					

Power Consumption from Transmission System - Displays the impact of attack/defense on bulk power purchase and system losses over the simulation duration.

Power Consumption From Transmission System Hide / Show

Control (No Attack or Defense) Scenario

Attack Scenario

Transmission Voltage - Displays the transmission-level voltage and gives the user a clear representation of stability problems (if any) due to voltage regulator actions.

Control (No Attack or Defense) Scenario

Attack Scenario

Substation Power Factor - Shows the effect of attack/defense agents on power factor at the head of feeder over the simulation duration.

Control (No Attack or Defense) Scenario

Attack Scenario

Energy Balance - Provides the user with a sanity check on total energy generation, consumption, and loss.

Control (No Attack or Defense) Scenario

Inverter Outputs - Detailed graph for each inverter on the circuit showing the impacts of attack/defense agents over the simulation duration. The voltage readings, real power output, and imaginary power output are represented for each phase.

Control (No Attack or Defense) Scenario

Attack Scenario

Triplex Meter Voltages - Shows the minimum, mean, and maximum voltages across all meters in circuit to give the user a representation of voltage abnormality.

Control (No Attack or Defense) Scenario

Other Outputs - include regulator tap changes, cap bank switching, and voltage imbalance to investigate second order effects.

Next Steps with NRECA Research

- Detailed studies of realistic scenarios at cooperatives
- Enhanced energy storage simulation
- Electric Vehicle simulation

References

- Walton, R. (2019, November 4). First cyberattack on solar, wind assets revealed widespread grid weaknesses, analysts say. Utility Dive. <u>https://www.utilitydive.com/news/first-cyber-attack-on-solar-wind-assets-revealed-widespread-grid-weak</u> nesse/566505/
- Naylor, B. (2018, March 23). Russia Hacked U.S. Power Grid So What Will The Trump Administration Do About It?. NPR.
 https://www.npr.org/2018/03/23/596044821/russia-hacked-u-s-power-grid-so-what-will-the-trump-admini

stration-do-about-it

- Lee, R. (2016, March 18). Analysis of the Cyber Attack on the Ukrainian Power Grid. Electricity Information Sharing and Analysis Center. <u>https://ics.sans.org/media/E-ISAC_SANS_Ukraine_DUC_5.pdf</u>
- Cybersecurity and Infrastructure Security Agency. (2018, March 15). *Russian Government Cyber Activity Targeting Energy and Other Critical Infrastructure Sectors* (TA18-074A). <u>https://us-cert.cisa.gov/ncas/alerts/TA18-074A</u>
- Vijayan, J. (2007, September 28). Simulated attack points to vulnerable U.S. power infrastructure. Computerworld.

https://www.computerworld.com/article/2541225/simulated-attack-points-to-vulnerable-u-s--power-infrast ructure.html

 Roberts, C., Ngo, S., Milesi, A., Peisert, S., Arnold, D., Saha, S., Scaglione, A., Johnson, N., Kocheturov, A., & Fradkin, D. (2020). <u>Deep Reinforcement Learning for DER Cyber-Attack Mitigation</u>.
ArXiverabs/2009.13088.

