
CIGAR: Siemens 

Contributions Year 3
T RDA BAM

siemens.com/corporate-technologySiemens AG 2021

siemens.com/corporate-technology


March 2021 Page 2 Siemens T RDA BAM US

Background

• Siemens Contributions to CIGAR:

• Year 1: RL algorithm down-selection and initial implementation

• Year 2: Support LBNL in development of PyCIGAR and implementation of RL algorithms

• Year 3: Exploration of advanced RL approaches, esp. Graph Convolutional Networks (GCN) for RL 

• Discussed in the following slides

• Independent Technology-to-market Effort:

• Development of a CIGAR Demonstrator for internal presentation to Siemens Business Units and customers



March 2021 Page 3 Siemens T RDA BAM US

Motivation 

Using Graph Convolutional Networks and Reinforcement 

Learning: control policies in complex systems

• The system is a combination of interconnected sub-systems, represented 

as a graph (network)

• Nodes – sub-systems to be controlled with a set of features 

(observations), which may be unique for a given node/node type

• Edges/Arcs - connections between nodes (potentially with their own 

associated feature sets)

• Changing topology of the graph

• New or deleted nodes/edges both during training/actual control

• The connections can be physical/logical/temporal/functional

Process control that addresses the following challenges:

• Balance between global/local control

• Changing topology

• Computational scalability

• Transfer learning from one network to another

Node types: Edge types:



March 2021 Page 4 Siemens T RDA BAM US

Existing Applications

• Applications of GCNs and RL:

• molecular graph generation [3]

• autonomous driving [4]

• combinatorial optimization [5, 6]

• traffic signal control [7]

• multi-agent cooperation [8, 9]

• Optimal power grid control



March 2021 Page 5 Siemens T RDA BAM US

Graph Convolutional Networks

• An adaptation of Artificial Neural Networks to graphs

• Simplest architecture: a sequence of aggregation (convolution) and 

fully connected layers

• Final output is features for each node in the embedded space

• Weights can be leaned in several setups: autoencoder, node’s 

feature prediction, edge/node prediction

• Graphs can be both static or dynamic

GCN block

Initial 

features

Embedded 

features

Hidden and/ 

or recurrent 

layers



March 2021 Page 6 Siemens T RDA BAM US

GCN+RL: simplest case

• Simply add several GCN layers before RL layers, the rest is the 

same as in “conventional” RL

Environment

GCN block

state 𝑠𝑡

rewards 𝑟𝑡+1

actions 𝑎𝑡

Initial 

features

Embedded 

features

Hidden and/ 

or recurrent 

layers

RL policy

RL block

Embedded 

state 𝑠𝑡

Environment

state 𝑠𝑡

rewards 𝑟𝑡+1

actions 𝑎𝑡

RL policy

RL block

RL GCN+RL



March 2021 Page 7 Siemens T RDA BAM US

GCN+VPG on seconds with hack 

'start_time’: 42900, 'end_time': 44100,'hack_start': 500,

inverter_nodes_ids=tuple(range(5, 18)),

ai_nodes_ids=(4, 5, 6, 8, 10, 11, 12),

attack_settings=(1.0, 1.001, 1.001, 1.01),

percent_hacked=np.array((0.5, .5, 0.5, 0, .5, .5, .5, 0, .5, 0, 0, .5, 0.5)



March 2021 Page 8 Siemens T RDA BAM US

GCN+VPG on minutes with hack  

'start_time’: 0, 'end_time': 1440,'hack_start': 500,

inverter_nodes_ids=tuple(range(5, 18)),

ai_nodes_ids=(4, 5, 6, 8, 10, 11, 12),

attack_settings=(1.0, 1.001, 1.001, 1.01),

percent_hacked=np.array((0.5, .5, 0.5, 0, .5, .5, .5, 0, .5, 0, 0, .5, 0.5)



March 2021 Page 9 Siemens T RDA BAM US

GCN+RL vs RL vs Fixed vs Adaptive control

Algorithm Rewards On 

Seconds

Rewards On 

Minutes

GCN+VPG -1331.02 -57844.75

VPG -2204.63 -61044.66

GCN+PPO -1938.02 -76310.87

PPO -1093.40 -41014.69

DDPG -1377.09 -61508.12

Fixed Control -37946.086 -289604.8

Adaptive Control -29518.09 -115710.36

• All GCN+RL and RL algorithms significantly 

outperformed Adaptive and Fixed Control

• PPO outperformed all

• GCN+VPG outperformed VPG (and DDPG): next best

• GCN+PPO was difficult to tune:

• it requires much longer time to converge



March 2021 Page 10 Siemens T RDA BAM US

GCN+RL Plan

1. Given a power grid, add several GCN layers to existing RL architectures, learn from the scratch GCN layers 

and policies simultaneously.

2. Explore additional parameter options, adjacency matrix definitions, etc.

3. Given a power grid, pretrain GCN layers on simulated data (Fixed/Adaptive Inverters) using autoencoder or 

future node feature prediction (recurrent layers), learn RL layers and possibly continue learning the GCN 

layers with much smaller learning rate

4. Include grouping of nodes according to graph topology or functional/correlation analysis. Having an 

independent RL agent for each group, repeat experiments 1 and 2, where GCN layers will be shared across 

all RL groups

5. Repeat experiments 2 and 3 when GCN layers are pretrained across several power grids: same node 

features but varying grid topologies. Assess transferability of trained architectures from one power grid to 

another



March 2021 Page 11 Siemens T RDA BAM US

References

1.   R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction. (Second Edition)., MIT Press, 2018.

2.   J. Zhou, G. Cui, Z. Zhang, Z. Liu, L. Wang, C. Li and M. Sun, "Graph neural networks: A review of methods and applications," arXiv preprint 

arXiv:1812.08434, 2018. 

3.   J. You, B. Liu, Z. Ying, V. Pande and J. Leskovec, "Graph convolutional policy network for goal-directed molecular graph generation," in Advances in neural 

information processing systems, 2018, pp. 6410-6421.

4.   M. Huegle, G. Kalweit, M. Werling and J. Boedecker, "Dynamic Interaction-Aware Scene Understanding for Reinforcement," arXiv preprint arXiv:1909.13582, 

2019. 

5.   Z. Li, Q. Chen and V. Koltun, "Combinatorial optimization with graph convolutional networks and guided tree search," in Advances in Neural Information 

Processing Systems, 2018, pp. 539-548.

6.   A. Mittal, A. Dhawan, S. Manchanda, S. Medya, S. Ranu and A. Singh, "Learning heuristics over large graphs via deep reinforcement learning," arXiv preprint 

arXiv:1903.03332, 2019. 

7.   T. Nishi, K. Otaki, K. Hayakawa and T. Yoshimura, "Traffic Signal Control Based on Reinforcement Learning with Graph Convolutional Neural Nets," in 2018 

21st International Conference on Intelligent Transportation Systems (ITSC), Maui, HI, 2018. 

8.   J. Jiang, C. Dun, T. Huang and Z. Lu, "Graph Convolutional Reinforcement Learning," in International Conference on Learning Representations, 2020. 

9.   A. Khan, E. Tolstaya, A. Ribeiro and V. Kumar, "Graph Policy Gradients for Large Scale Robot Control," arXiv preprint arXiv:1907.03822, 2019. 

10. P. Goyal, S. R. Chhetri and A. Canedo, "dyngraph2vec: Capturing network dynamics using dynamic graph representation learning," Knowledge-Based Systems, 

vol. 187, p. 104816, 2020. 



March 2021 Page 12 Siemens T RDA BAM US

Graph Convolutional Layers

• Given a graph 𝐺 = 𝑉, 𝐸 with 𝑛 nodes and a feature matrix 𝑋 ∈ ℝ𝑛×𝑑, for 

each node we want to aggregate information available in its neighborhood

• If 𝐴 is adjacency matrix, መ𝐴 can be:

• Normalized adjacency matrix

• Symmetric normalized adjacency matrix

• Normalized adjacency matrix with identity preserving

• 𝐻(0) = 𝑋

• From level 𝑘 to level 𝑘 + 1:

𝐻 𝑘+1 = 𝑞(𝑘) መ𝐴𝐻(𝑘)𝑊 𝑘 + 𝑏𝑖𝑎𝑠(𝑘)

• 𝑊 𝑘 and 𝑏𝑖𝑎𝑠(𝑘) are trainable.

1

2

3 4

5

𝐴 =

0 1 1 0 0
1 0 1 0 1
1 1 0 1 0
0 0 1 0 1
0 1 0 1 0

adjacency matrix

መ𝐴 =

1/3 1/3 1/3 0 0
1/4 1/4 1/4 0 1/4
1/4 1/4 1/4 1/4 0
0 0 1/3 1/3 1/3
0 1/3 0 1/3 1/3

Normalized

መ𝐴 =

1 1/2 1/2 0 0
1/3 1 1/3 0 1/3
1/3 1/3 1 1/3 0
0 0 1/2 1 1/2
0 1/2 0 1/2 1

Normalized with identity

መ𝐴 = 𝐷−0.5 𝐴 + 𝐼 𝐷−0.5

Symmetric Normalized



March 2021 Page 13 Siemens T RDA BAM US

GCN+VPG Tuning

tune_gcn_vpg_args = {

'gcn_layers': [1, 2],

'neighbors': [3, 4],

'adjmat_normalization': ["symmetric_normalized_matrix",

"normalized_matrix",

"normalized_with_loops"],

'buffer_capacity': 4 * 1440,

'gamma': 0.99,

'lam': 0.95,

'lr': [0.05, 0.005],

'ann': [0, 1],

'optim_epoch': 10,

'batch_size': 7 * 36,

'epsilon': 0.2,

'trace_length': None,

'ent_coef': 0.0,

'vf_coef': [0.1, 0.01],

'clip_value': [0, 1],

'action_distribution': 'Dirichlet',

'output_activation': 'relu',

'train': 1,

'num_update': 100,

'update_freq': 4,

'horizon': 1440,

'save_iter': 5

}

GCN-specific



March 2021 Page 14 Siemens T RDA BAM US

Remarks

• Constructing an adjacency matrix

• If hyperparameter ‘neighbors’ is set to 𝑘, when each load 

node is connected with k its neighbors in the power grid 

in the hop distance sense.

• No respect to the line lengths, functional dependencies, 

etc.

• Node 822 is connected with nodes 820 and 818 if 𝑘 = 2



March 2021 Page 15 Siemens T RDA BAM US

Heterogeneous Agent Groups

• Divide nodes into groups and have a separate control policy per group

• Grouping strategies:

• According to node types

• Domain-driven: a domain expert suggests grouping strategy

• Topology-driven, e.g., hub nodes fall in one group, and the nodes on the 

periphery fall in the other

• Data-driven: nodes are divided into groups according to their similarity with 

some clustering approach

• Function-driven: nodes’ function in the graph may change over time based 

on what they are connected with. 

Node types: Edge types:



March 2021 Page 16 Siemens T RDA BAM US

GCRL with Heterogeneous Agent Groups

• Nodes and edges may be of different types and have their 

associated feature sets, which are observed in the environment at 

time moment 𝑡 and constitute state 𝑠𝑡 of the system

• The underlying graph 𝐺𝑡 is naturally a part of 𝑠𝑡 as it depicts the 

topology at time moment 𝑡.

• The embedded feature set is split into embedded states 𝑠𝑡
𝑖 and 

forwarded to RL group policy 𝑖

• Reward 𝑟𝑡
𝑖 may contain both local reward 𝑟𝑙𝑜𝑐𝑎𝑙𝑡+1

𝑖 (specific to the 

node group) and global reward 𝑟𝑔𝑙𝑜𝑏𝑎𝑙𝑡+1
of the system.

• During the learning process, triplets 𝑠𝑡
𝑖 , 𝑎𝑡

𝑖 , 𝑟𝑡+1
𝑖 will be used to 

update RL policy parameters as in conventional RL, and further 

update corresponding parameters in the GCN layers, which will 

further tailor the sharable layers to the system control task at hands.

action 𝑎𝑡
𝑘

Environment

Node types: Edge types:

GCN block

state 𝑠𝑡

Rewards:

𝑟𝑔𝑙𝑜𝑏𝑎𝑙𝑡+1

𝑟𝑙𝑜𝑐𝑎𝑙𝑡+1
1 ,

𝑟𝑙𝑜𝑐𝑎𝑙𝑡+1
2 ,

… ,

𝑟𝑙𝑜𝑐𝑎𝑙𝑡+1
𝑘

Embedded 

state 𝑠𝑡
1 action 𝑎𝑡

1

Initial 

features

Embedded 

features

Hidden and/ 

or recurrent 

layers

RL group 1 

(nodes            )

RL group 2 

(nodes      )

RL group k 

(nodes      )

RL algorithm 1

RL algorithm 2

RL algorithm 𝑘

action 𝑎𝑡
2

RL block

Embedded 

state 𝑠𝑡
2

Embedded 

state 𝑠𝑡
𝑘



March 2021 Page 17 Siemens T RDA BAM US

GCRL with Heterogeneous Agent Groups: Advantages

• Sharable knowledge of the network across policies is encoded in the 

GCN layers

• Specific control in Group Policies is generated by the RL models

• Increased scalability learning the Group Policies separately and 

backpropagating the RL policy information to the GCN layers

• Adaptivity to changing conditions (changing topology, new/dropped 

nodes and links) is learned via aggregation and/or recurrent layers 

that analyze temporal transitions and thus capture varying network 

dynamics.

• Adaptive/Fixed Clustering of nodes into groups based on similarity, 

domain knowledge or differences in action space. Furthermore, as 

the embeddings capture the node and edge temporal evolution, 

clustering can be done based on the functional properties of the 

nodes in the graph.


