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SPADES. Motivation/Context

• Goal: To learn defender policies that mitigate cyber attacks to

distributed energy resources, e.g. solar inverters and energy storage.

• Two different approaches:

• Fundamental Approach. Understanding behavior of controller devices

in the network and finding guarantees of stability

• Learning Approach. Leveraging low-dimensional representation of the

voltage phasors to learn control policies through neural networks.

• Tools needed:

• Forecasts (solar and load)1

• Situational Awareness (compromised vs non-compromised devices)

• Deterministic Attacker Policy.

• Power Flow Simulator.

1In red are past contributions (published research)
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Problem Framework

Power Flow Simulator

(OpenDSS - Log(v) 3LPF)

Forecasts

(Uncertainty)

- Solar (SODA)

- Load (Pecan Street)

Attacker Information

- Hacked/Unhacked Devices

- Controllable/Autonomous Devices

- Attacker Policy (Deterministic)

Stability-

Constrained OPF

(Myopic)

Stability-Constrained

Multi-stage

Stochastic OPF

(Long-sighted)

Graph ConvNet-based

Reinforcement Learning

Defender PolicyProblem Input

SPADES Framework - Mitigation of Cyber Attacks

Past Work:

Current Work:
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Log(v) 3LPF



Log(v) 3LPF is used as the power flow simulator

Log(v) 3LPF:

• Developed a linear power flow simulator derived from first principles.

• Agnostic to the structure of the network (mesh vs radial).

• Models all common network elements found in distribution systems.

• Efficiently solves the system of equations (i.e. it is fast)

• Convergence guarantees
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Figure 1: OpenDSS vs Log(v) 3LPF vs Linear DistFlow equations from

Schweitzer et al., 2019. Voltage magnitude for all phases, IEEE-123 test case
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Log(v) 3LPF solves very large test cases, e.g. the IEEE-8500
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Figure 2: IEEE-8500, Voltage magnitude (left) and angle (right) results from

phase 1. Figure shows 30 random buses
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The Log(v) 3LPF yields results similar to the ”exact” solution

Table 1: Accuracy of Log(v) 3LPF - OpenDSS

Case Voltage Magnitude Voltage Angle

RMSE (p.u.) MAPE (%) RMSE (deg)

IEEE-13 0.01 1.06 1.58

IEEE-34 0.03 2.46 2.10

IEEE-37 0.03 2.97 0.38

IEEE-123 0.02 1.64 0.62

European LV 0.00 0.09 0.15

IEEE-8500 0.02 2.45 3.44
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Log(v) 3LPF can be used in Reinforcement Learning

Figure 3: Average policy reward (top), OpenDSS vs Log(v) 3LPF. Policy

evaluation (after training) with log(v) 3LPF (left) vs openDSS (right) 6



Voltage stability in distribution

systems under uncertainty (a.k.a.

fundamental approach)



Voltage stability in distribution power systems

Goal: Study the voltage stability of a distribution system and propose a

method to dispatch generation (controls) to stabilize the system under a

cyber attack.

Voltage stability during a cyber attack:

• Destabilizing behavior created by controllers/generators.

• Controllers have 3 operating modes, above/below/within deadband

• Two categories:

• Devices change power injection - Continuous dynamics

• Devices change line admittance - Discrete dynamics
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Discrete dynamics. Devices that change line admittance

General Form: xt+1 = Aσ(xt ;st)xt , xt ∈ {0, 1}k , σ(xt ; st) ∈ {1, 2, 3}

1 2 3 n τ1 τm−1 τmA2
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A3
A3 A3
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. . .. . .

Time Counter

Controller Setpoints

• Examples: Voltage regulator, cap banks, switches, relays.

• Stability:

• System above is not stable under arbitrary switching

• Provide a mathematical proof. Intuition: In figure above, I can

always find a condition that moves the system to a new state.
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Continuous dynamics. Devices that change power injection

General Form: Tṡ = f(st , xt ,ηt , et)− st , ηt ∈ {0, 1} (Charging)

ė = pt (only in batteries, et is power available)
(1)
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• Examples: Batteries and solar

panels

• Feasible region is non-convex.

Use binary to express as convex

region.

• Stability proof found in

*Reference Dan’s paper
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Discrete + Continuous dynamics. Hybrid automaton

What we know so far:

• Discrete dynamics are unstable under arbitrary switching

• We can find guarantees of stability of continuous dynamics

• Stability of both. How? By means of constrained switching
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I

τ are the setpoints of the discrete controllers, Si (t) is the feasible set of

power injections that the inverters can produce, Aτ are the set of power

injections that induce a voltage within the deadband (stable), I is the

”stable” regions.
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Graph ConvNet-based

Reinforcement Learning



Graph ConvNet-based Reinforcement Learning

Goals: To design a model-free volt-VAR control (VVC) algorithm via

spatio-temporal graph ConvNet-based RL framework to control power

delivery elements in the unbalanced distribution systems.

Contributions:

• To capture spatio-temporal correlation of voltage measurement:

• We propose spatio-temporal Graph Convolutional Networks

• To consider sparse observation of voltage phasor measurement

• To consider distributed control by multi-agent RL

• Applications: cyber-attack mitigation
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Reinforcement Learning for Voltage Regulation
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Figure 4: Based on the three-phase IEEE 13-bus feeder, two smart inverters

are installed, and actions are taken by DRLs to change the power injections of

smart inverters. The rewards are used to penalize voltage deviations , i.e.,

rewards = −
∑

i∈N s

∣∣Vi − V ref
∣∣. The two figures compare the performance of

CGCN and RGCN with fully-connected NN, CNN within DRL, where the left

one is based on full observations of graph signals, and the right one is based on

sparse observations of graph signals (with 8 sensors installed in 41 buses).
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Reinforcement Learning for Cyber-Attack Mitigation

Figure 5: Voltage profiles with oscillations, including the left figure with the

FC-based RL control and the right figure with the RGCN-based RL control.
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Single-Agent and Multi-Agents

STGCN
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States
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Single-Agent Centralized STGCN-DRL 

STGCN Actor-Critic

Dynamic Distribution System

Reward: !!
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Inverter: !!
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Multi-Agent Distributed STGCN-DRL
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Figure 6: (Left) Singe-Agent DRL and (Right) Multi-Agent DRL.

Figure 7: Reward Curves. (Left) Singe-Agent DRL and (Right) Multi-Agent

DRL.
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SPADES 2021 in a nutshell

Student/Staff:

• SINE Lab transferred to Cornell University

• Ignacio passed his Qualifying Exam

• Tong joined the lab as a Post-Doc in Summer

Research:

• SODA and Log(v) 3LPF are now open-source.

• Submitted ”Log(v) 3LPF: A Linear Power Flow Formulation for

Unbalanced Three-Phase Distribution Systems” to IEEE

Transactions on Power Systems. 2nd round of revisions

• Working draft ”Voltage stability of three-phase unbalanced

distribution power systems under uncertainty”

• Working draft ”Spatio-Temporal Graph ConvNet-based

Reinforcement Learning for Distribution Network Voltage Control”

15

https://github.com/Ignacio-Losada/SoDa
https://github.com/Ignacio-Losada/Log-v-3LPF


Future Work

Future Work (Tentative):

• Develop correlated load-solar time series

• Implement probabilistic attacker policy (modeling cyber layer).

• Develop GNN-based reinforcement learning open-source library for

network control.
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