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SPADES. Motivation/Context

e Goal: To learn defender policies that mitigate cyber attacks to
distributed energy resources, e.g. solar inverters and energy storage.

e Two different approaches:
e fFundamental Approach. Understanding behavior of controller devices
in the network and finding guarantees of stability
e Learning Approach. Leveraging low-dimensional representation of the
voltage phasors to learn control policies through neural networks.

e Tools needed:
e Forecasts (solar and load)*
e Situational Awareness (compromised vs non-compromised devices)
e Deterministic Attacker Policy.
e Power Flow Simulator.

Un red are past contributions (published research)



Problem Framework

- Controllable/Autonomous Devices
- Attacker Policy (Deterministic)
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Log(v) 3LPF



Log(v) 3LPF is used as the power flow simulator

Log(v) 3LPF:

Developed a linear power flow simulator derived from first principles.
Agnostic to the structure of the network (mesh vs radial).

Models all common network elements found in distribution systems.
Efficiently solves the system of equations (i.e. it is fast)

e Convergence guarantees
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Figure 1: OpenDSS vs Log(v) 3LPF vs Linear DistFlow equations from
Schweitzer et al., 2019. Voltage magnitude for all phases, IEEE-123 test case



Log(v) 3LPF solves very large test cases, e.g. the IEEE-8500
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Figure 2: |IEEE-8500, Voltage magnitude (left) and angle (right) results from
phase 1. Figure shows 30 random buses



The Log(v) 3LPF yields results similar to the ”exact” solution

Table 1: Accuracy of Log(v) 3LPF - OpenDSS

Case Voltage Magnitude Voltage Angle
RMSE (p.u.) MAPE (%) RMSE (deg)
IEEE-13 0.01 1.06 1.58
IEEE-34 0.03 2.46 2.10
IEEE-37 0.03 2.97 0.38
IEEE-123 0.02 1.64 0.62
European LV 0.00 0.09 0.15

IEEE-8500 0.02 2.45 3.44




Log(v) 3LPF can be used in Reinforcement Learning
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Figure 3: Average policy reward (top), OpenDSS vs Log(v) 3LPF. Policy
evaluation (after training) with log(v) 3LPF (left) vs openDSS (right) 6



Voltage stability in distribution
systems under uncertainty (a.k.a.
fundamental approach)



Voltage stability in distribution power systems

Goal: Study the voltage stability of a distribution system and propose a
method to dispatch generation (controls) to stabilize the system under a

cyber attack.
Voltage stability during a cyber attack:

e Destabilizing behavior created by controllers/generators.
e Controllers have 3 operating modes, above/below/within deadband
e Two categories:

e Devices change power injection - Continuous dynamics

e Devices change line admittance - Discrete dynamics
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Discrete dynamics. Devices that ch

General Form: x:,1 = A (x.;s)Xt; Xt € {0, 135 o(xs; s) € {1,2,3}

Time Counter As

Controller Setpoints

e Examples: Voltage regulator, cap banks, switches, relays.
e Stability:
e System above is not stable under arbitrary switching

e Provide a mathematical proof. Intuition: In figure above, | can
always find a condition that moves the system to a new state.



Continuous dynamics. Devices t power injection

General Form: Ts = f(s;,x¢, s, e:) — s, n: € {0,1} (Charging)

€ = p: (only in batteries, e; is power available)

(1)

e Examples: Batteries and solar

panels

e Feasible region is non-convex.

Use binary to express as convex

Reactive Power, ¢

region.

e Stability proof found in

*Reference Dan's paper

Feasible Region]
sInverter Region

Active Power, p




Discrete + Continuous dynamics. Hybrid automaton

What we know so far:

e Discrete dynamics are unstable under arbitrary switching
e We can find guarantees of stability of continuous dynamics

e Stability of both. How? By means of constrained switching

p

T are the setpoints of the discrete controllers, S;(t) is the feasible set of
power injections that the inverters can produce, A, are the set of power
injections that induce a voltage within the deadband (stable), Z is the
"stable" regions.
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Graph ConvNet-based
Reinforcement Learning



-based Reinforcement Learni

Goals: To design a model-free volt-VAR control (VVC) algorithm via
spatio-temporal graph ConvNet-based RL framework to control power
delivery elements in the unbalanced distribution systems.

Contributions:

e To capture spatio-temporal correlation of voltage measurement:
e We propose spatio-temporal Graph Convolutional Networks

e To consider sparse observation of voltage phasor measurement

e To consider distributed control by multi-agent RL

e Applications: cyber-attack mitigation
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Reinforcement Learning for Voltage Regulation
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Figure 4: Based on the three-phase IEEE 13-bus feeder, two smart inverters
are installed, and actions are taken by DRLs to change the power injections of
smart inverters. The rewards are used to penalize voltage deviations , i.e.,
rewards = — 3.\ ]\/,- - V*e'c|. The two figures compare the performance of
CGCN and RGCN with fully-connected NN, CNN within DRL, where the left
one is based on full observations of graph signals, and the right one is based on
sparse observations of graph signals (with 8 sensors installed in 41 buses).
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Learning for Cyber-Attack Mitigation
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Figure 5: Voltage profiles with oscillations, including the left figure with the
FC-based RL control and the right figure with the RGCN-based RL control.
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Single-Agent and Multi-Agents

Multi-Agent Distributed STGCN-DRL
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Figure 6: (Left) Singe-Agent DRL and (Right) Multi-Agent DRL.
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Figure 7: Reward Curves. (Left) Singe-Agent DRL and (Right) Multi-Agent

DRL.
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SPADES 2021 in a nutshell

Student/Staff:

e SINE Lab transferred to Cornell University
e Ignacio passed his Qualifying Exam

e Tong joined the lab as a Post-Doc in Summer
Research:

e SODA and Log(v) 3LPF are now open-source.

e Submitted "Log(v) 3LPF: A Linear Power Flow Formulation for
Unbalanced Three-Phase Distribution Systems” to IEEE
Transactions on Power Systems. 2nd round of revisions

e Working draft " Voltage stability of three-phase unbalanced
distribution power systems under uncertainty”

e Working draft "Spatio-Temporal Graph ConvNet-based
Reinforcement Learning for Distribution Network Voltage Control”
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https://github.com/Ignacio-Losada/SoDa
https://github.com/Ignacio-Losada/Log-v-3LPF

Future Work (Tentative):

e Develop correlated load-solar time series
e Implement probabilistic attacker policy (modeling cyber layer).

e Develop GNN-based reinforcement learning open-source library for
network control.
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