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Motivation - Growth of Solar

Huge growth of solar (PV) as a source of electricity in U.S.

U.S. electricity generation from selected fuels
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Growth of PV in Distribution Systems

IEEE STANDARDS ASSOCIATION QIEEE

IEEE Standard for Interconnection
and Interoperability of Distributed
Energy Resources with Associated
Electric Power Systems Interfaces

PV resource is highly
distributed

|EEE Standards Coordinating Committee 21

sponsored by the
IEEE Standards Coordinating Committee 21 on Fuel Cells, Photovoltaics, Dispersed
Generation, and Energy Storage

1547 establishes guidelines for PV system voltage and frequency
support and ride-through behavior 3 .h|
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Smart Inverter Voltage Regulation Co

Reactive Power (% of Stated Capability)
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» Autonomous control of DERs via Internet, cellular, or power
line carrier connectivity exposes the power system to cyber
vulnerability.

» In Hawaii (2015), 800,000 micro-inverters are remotely
controlled on Oahu in one day

» An increase in the number and type of DERs (PV inverters,
batteries, ...) integrate into the power system

» Improper settings in a portion of DERs can lead to voltage
instabilities

» Voltage instabilities can cause damage to devices, cause
device trips, and harm power quality

If the DERs were compromised, what would happened?
How to mitigate potential attacks? ’\“
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Motivation

Voltage instabilities in electrical grid
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» Bad configuration of inverters can lead to voltage instabilities.

» The system is non-linear, non-convex and dynamic (thousand

of DERs).
» Reinforcement learning is a suitable approach for this tasks. ’\‘ '3|
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Previous works - Publications

» Deep Reinforcement Learning (DRL) for DER Cyber-Attack
Mitigation (SmartGridComm 2020)- Using DRL to mitigate
voltage oscillation.

» Deep Reinforcement Learning for Mitigating Cyber-Physical
DER Voltage Unbalance Attacks (ACC 2021) - Using DRL to
mitigate voltage imbalance.

» Open-source framework PyCIGAR - a reinforcement learning
framework to train agents to use non-compromised DER to
mitigate voltage instability
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Previous works

» We trained PPO (a method of DRL) agents to control the
DERs to mitigate oscillation voltage and imbalance voltage

» However, reinforcement learning algorithms require a lot of
simulations, we need to develop an efficient method.

PPO Random Search
Value Function, Policy Policy
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Random Search

E Agent

State: (s; € S) ~P Action
Reward: Ry € R (ar e A) ~7

Environment ]

» Rollout simulation multiple times with small fluctuation in the
policy parameters # to approximate the gradient of the return

» Learn the new set of policy parameters 0* with gradient ascent
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Random Search

s S/,
dx Ax

second-order accurate
first-order derivative

Finite-difference approximation ,\‘ |
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Random Search

Hyperparameters: no. of directions per iteration N,
exploration noise v, learning rate «
Initialize: 7y is linear or non-linear policy with parameters 0
1 while ending condition not satisfied do
2 Sample 41,02, ..., 0y i.i.d. standard normal entries
3 Collect 2N rollouts of horizon H and their corresponding
rewards using the 2/ policies.
» Sample the rollouts with policy Wejiwsk(?)

N
(%
= >l ) e W
k=1

Oj+1 =0 + ag;

4 end

i.i.d: Independently Identically Distributed. —
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Augmented Random Search

Augmented Random Search proposes 3 improvements:
» Normalization of the states
» Scaling the gradient by the standard deviation of return

» Using top performing directions in mini-batch updates
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Augmented Random Search

Hyperparameters: no. of directions per iteration N,

exploration noise v, number of top
directions b (b < N)
Initialize: 7y is linear or non-linear policy with parameters 0
1 while ending condition not satisfied do
2 Sample §1, 62, ..., dp i.i.d. standard normal entries
3 Collect 2N rollouts of horizon H and their corresponding
rewards using the 2/ policies.
» Normalization of the states X

» Sample the rollouts with policy g, 4,4, (X)
Get b top directions, T, (k)£ 1 < (k) < b are the policies.

g = Z[f 0;.(k)+) — (70,60, )0 k)

_ADAM( j,gj,(x,ﬁo.,ﬁl) =
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Adam Optimizer Overview

Adam Optimizer is the combination of two gradient descent
methodologies:
» Momentum: taking into account the moving average of the
gradients

» RMSProp: adaptive learning rate - resolve the problem that
gradients may vary widely in magnitudes in a batch
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Adam Optimizer - Momentum

Momentum accelerate the gradient descent algorithm by taking
into account the moving average of the gradients; making the
algorithm converge towards the minima faster.

Wis1 = wj —a-m;

where,
mjp1 = f1-mj+(1—p1)- gj+1
wji1: weight at current timestep
wj: weight at last timestep
gj+1: gradient at the current timestep
a: learning rate
fB1: moving average parameter
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Adam Optimizer - RMSProp

RMSprop uses the unit gradients for each weight.

8j+1

VVYj+l

Wjt1 = Wj — -

where,
Visr = B2 - vi + (1= f2) - g7

wjt1: weight at current timestep

wj: weight at last timestep

gj+1: gradient at the current timestep
a: learning rate

B2: moving average parameter
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Adam Optimizer - RMSProp visualization

RMS Prop with saddle point and minima
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Adam Optimizer

N o g A W N =

Algorithm 1: Adam Optimization Algorithm 1-step forward

Hyperparameters: Gradient g;, stepsize «, exponential decay
rate g, S1 for moment estimates,
tolerance parameter Aapap > 0 for
numerical stability. mg, vp < [0, 0, 0]

Function ADAM (0}, gj, o, 5o, B1):

mj < B1-mj_1+ (1 — B1) - g # from momentum

Vi< fo-vjio1+ (1= pB1) - gj2 # from RMSProp

mj < mj/(1 = f)

Vi < vi/(1-By)

Oj41 < 0; — a1 /(\/V; + Aapam)

return 6;

https://arxiv.org/pdf/1412.6980 — A
creeees "'|
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Adam Optimizer - Training cost comparison

] MNIST Multilayer Neural Network + dropout
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Modeling DER Action Space

Sensor Grid
VV/VW Control Logie_ __
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> Voltage measurements are low-pass filtered before active
power and reactive power set point calculation

N

» These set-points are themselves low-pass filtered to ramp ,\‘
rate limit active and reactive power injections BERKELEY LAB
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Smart Inverter Voltage Regulation Co

Reactive Power (% of Stated Capability)
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Modeling Action

» Action is the deviation, i.e. a; = An, from default VV/VW

parameterization

» The agent has multi-head output continuous action
ayVi € {a, b, c} for each phase
» Translating curve was found to be preferred action during

training

» Agent learns to indirectly control reactive power
injection/consumption

RL Agent Action
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Training

observation(s)

PYCIGAR
| Kernel
Simulator
esiereels S0 G Adam-based ARS
Device
RB Adam ARS |
Controller  Controller

action(s)

» For training we consider a single ARS agent whose observation
input vector is the mean of all DER observation input vectors

» This agent then outputs an action that is applied across all
inverters in the system

» Once trained, this policy is deployed and acts only on local

measurements ’\‘
BERKELEY LAB
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Observation Vector - Oscillation Energy Filter

> We use a simple filter to estimate the energy of the oscillation
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Observation Vector - Unbalance measurement

—_ —_ —_ _b —_ —_
VUi = max(|vj: — ia,,t’v V:7,t - Vi,t|7 Vit — Viiel) (1)
It

)

P> ¥;: the mean measured voltage magnitude at bus i
-a ob
> V7., V7, Vi, are the measured voltage magnitudes on phase a,

b, and ¢ respectlvely.
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Observation Vector

The complete observation vector is then given by
vo; ¢ the estimation of voltage oscillation energy at node /

vii +: the estimation of voltage unbalance energy at node i

v,f”tb’c: measurement of the phase voltages at bus i

qi‘f“' "°M: the available reactive power capacity without

vV v.Yvyy

active power curtailment.
a?_;, a2 |, aS_;: the previous action taken by the agent
across each phase.
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Reward Function

At a timestep t, the reward function, R:(at, 0¢), to be maximized
is:

Re = — | oullvitlloo + oullvor|loo + Z 03135&22714»
ic{a,b,c}
&l p 2
. it
Z 0—0“3;"2 + o ‘U| ZUP - r_iax
ie{a,b,c} pf’t

This reward seeks to encourage the agent to
» Minimize system maximum voltage oscillations
» Minimize the worst case voltage imbalance
» Minimize number of VV/VW re-configurations
» Encourage the VV/VW parameterizations to 5
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remain close to their default values
» Minimize active power curtailment

BERKELEY LAB

30/37



Simulation Results - Scenario

» Unbalanced |[EEE 37 node
test feeder
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Training Performance
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Simulation Results - Experiment 1
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Simulation Results - Experiment 2
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Final Remarks

VVvVvyVvVvVVvVYVYY

Oscillation policy is a linear policy

Voltage bias compliant with |IEEE 1547 standard
Control law is completely local

Control law requires no knowledge of the system
No communication required

Zero-trust control architecture

Control law generalizes broadly to many different kinds of
DER (including demand response)
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» Optimal device settings under normal condition
» Extend to thermal loads/buildings experiments

» Electric vehicles and batteries
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Final Remarks

This work was sponsored by the Cybersecurity for Energy Delivery
Systems (CEDS) program within the Cybersecurity, Energy
Security and Emergency Response (CESER) Office at the U.S.
Department of Energy
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