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Motivation - Growth of Solar

Huge growth of solar (PV) as a source of electricity in U.S.

https://www.eia.gov/outlooks/aeo/pdf/04%20AEO2021%20Electricity.pdf
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Growth of PV in Distribution Systems

PV resource is highly
distributed

1547 establishes guidelines for PV system voltage and frequency
support and ride-through behavior
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Smart Inverter Voltage Regulation Controllers

Volt-Watt Curve

Volt-VAR curve
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Motivation

▶ Autonomous control of DERs via Internet, cellular, or power
line carrier connectivity exposes the power system to cyber
vulnerability.

▶ In Hawaii (2015), 800,000 micro-inverters are remotely
controlled on Oahu in one day

▶ An increase in the number and type of DERs (PV inverters,
batteries, ...) integrate into the power system

▶ Improper settings in a portion of DERs can lead to voltage
instabilities

▶ Voltage instabilities can cause damage to devices, cause
device trips, and harm power quality

If the DERs were compromised, what would happened?
How to mitigate potential attacks?
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Motivation
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▶ Bad configuration of inverters can lead to voltage instabilities.

▶ The system is non-linear, non-convex and dynamic (thousand
of DERs).

▶ Reinforcement learning is a suitable approach for this tasks.
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Previous works - Publications

▶ Deep Reinforcement Learning (DRL) for DER Cyber-Attack
Mitigation (SmartGridComm 2020)- Using DRL to mitigate
voltage oscillation.

▶ Deep Reinforcement Learning for Mitigating Cyber-Physical
DER Voltage Unbalance Attacks (ACC 2021) - Using DRL to
mitigate voltage imbalance.

▶ Open-source framework PyCIGAR - a reinforcement learning
framework to train agents to use non-compromised DER to
mitigate voltage instability
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Previous works

▶ We trained PPO (a method of DRL) agents to control the
DERs to mitigate oscillation voltage and imbalance voltage

▶ However, reinforcement learning algorithms require a lot of
simulations, we need to develop an efficient method.

PPO Random Search

Value Function, Policy Policy
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Random Search

Environment

Agent

State: (st ∈ S) ∼ P
Reward: Rt ∈ R

Action
(at ∈ A) ∼ π

▶ Rollout simulation multiple times with small fluctuation in the
policy parameters θ to approximate the gradient of the return

▶ Learn the new set of policy parameters θ∗ with gradient ascent
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Random Search

Finite-difference approximation

13 / 37



Random Search

Hyperparameters: no. of directions per iteration N,
exploration noise ν, learning rate α

Initialize: πθ is linear or non-linear policy with parameters 0
1 while ending condition not satisfied do
2 Sample δ1, δ2, ..., δN i.i.d. standard normal entries
3 Collect 2N rollouts of horizon H and their corresponding

rewards using the 2N policies.
▶ Sample the rollouts with policy πθj±νδk (x̃)

gj =
α

N

N∑
k=1

[r(πθj ,k,+)− r(πθj ,k,−)]δk

θj+1 = θj + αgj

4 end

i.i.d: Independently Identically Distributed.
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Augmented Random Search

Augmented Random Search proposes 3 improvements:

▶ Normalization of the states

▶ Scaling the gradient by the standard deviation of return

▶ Using top performing directions in mini-batch updates
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Augmented Random Search

Hyperparameters: no. of directions per iteration N,
exploration noise ν, number of top
directions b (b ≤ N)

Initialize: πθ is linear or non-linear policy with parameters 0
1 while ending condition not satisfied do
2 Sample δ1, δ2, ..., δN i.i.d. standard normal entries
3 Collect 2N rollouts of horizon H and their corresponding

rewards using the 2N policies.
▶ Normalization of the states x̃

▶ Sample the rollouts with policy πθj±νδk (x̃)

Get b top directions, πθj ,(k),±, 1 ≤ (k) ≤ b are the policies.

gj =
α

bσR

b∑
k=1

[r(πθj ,(k),+)− r(πθj ,(k),−)]δ(k)

θj+1 = ADAM(θj , gj , α, β0, β1)

4 end

https://arxiv.org/pdf/1803.07055
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Adam Optimizer Overview

Adam Optimizer is the combination of two gradient descent
methodologies:

▶ Momentum: taking into account the moving average of the
gradients

▶ RMSProp: adaptive learning rate - resolve the problem that
gradients may vary widely in magnitudes in a batch

17 / 37



Adam Optimizer - Momentum

Momentum accelerate the gradient descent algorithm by taking
into account the moving average of the gradients; making the
algorithm converge towards the minima faster.

wj+1 = wj − α ·mj

where,
mj+1 = β1 ·mj + (1− β1) · gj+1

wj+1: weight at current timestep
wj : weight at last timestep
gj+1: gradient at the current timestep
α: learning rate
β1: moving average parameter
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Adam Optimizer - RMSProp

RMSprop uses the unit gradients for each weight.

wj+1 = wj − α ·
gj+1√
vj+1

where,
vj+1 = β2 · vj + (1− β2) · g2

j+1

wj+1: weight at current timestep
wj : weight at last timestep
gj+1: gradient at the current timestep
α: learning rate
β2: moving average parameter
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Adam Optimizer - RMSProp visualization

RMS Prop with saddle point and minima
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Adam Optimizer

Algorithm 1: Adam Optimization Algorithm 1-step forward

Hyperparameters: Gradient gt , stepsize α, exponential decay
rate β0, β1 for moment estimates,
tolerance parameter λADAM > 0 for
numerical stability. m0, v0 ← [0, 0, 0]

1 Function ADAM(θj , gj , α, β0, β1):
2 mj ← β1 ·mj−1 + (1− β1) · gj # from momentum
3 vj ← β2 · vj−1 + (1− β1) · g2

j # from RMSProp

4 m̂j ← mj/(1− βj
1)

5 v̂j ← vj/(1− βj
2)

6 θj+1 ← θj − α · m̂j/(
√

v̂j + λADAM)
7 return θt

https://arxiv.org/pdf/1412.6980
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Adam Optimizer - Training cost comparison
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Modeling DER Action Space

▶ Voltage measurements are low-pass filtered before active
power and reactive power set point calculation

▶ These set-points are themselves low-pass filtered to ramp
rate limit active and reactive power injections
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Smart Inverter Voltage Regulation Controllers

Volt-Watt Curve

Volt-VAR curve
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Modeling Action

▶ Action is the deviation, i.e. at = ∆η, from default VV/VW
parameterization

▶ The agent has multi-head output continuous action
ait∀i ∈ {a, b, c} for each phase

▶ Translating curve was found to be preferred action during
training
▶ Agent learns to indirectly control reactive power

injection/consumption
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Training

PyCIGAR EnvironmentPyCIGAR EnvironmentPyCIGAR Environment

Simulator
(OpenDSS)

PyCIGAR
API
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DeviceDeviceDevice
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RB
Controller

RB
Controller
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Controller
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Kernel

action(s)

observation(s)

▶ For training we consider a single ARS agent whose observation
input vector is the mean of all DER observation input vectors

▶ This agent then outputs an action that is applied across all
inverters in the system

▶ Once trained, this policy is deployed and acts only on local
measurements
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Observation Vector - Oscillation Energy Filter

▶ We use a simple filter to estimate the energy of the oscillation

HHP(z) c · ()2 HLP(z)
vi ,t ∆vi ,t vi ,t
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Observation Vector - Unbalance measurement

vui ,t =
max(|v̄i ,t − v̄ai ,t |, |v̄i ,t − v̄bi ,t |, |v̄i ,t − v̄ ci ,t |)

v̄i ,t
(1)

▶ v̄i : the mean measured voltage magnitude at bus i

▶ v̄ai ,t , v̄
b
i ,t , v̄

c
i ,t are the measured voltage magnitudes on phase a,

b, and c respectively.
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Observation Vector

The complete observation vector is then given by

▶ voi ,t : the estimation of voltage oscillation energy at node i

▶ vii ,t : the estimation of voltage unbalance energy at node i

▶ va,b,ci ,t : measurement of the phase voltages at bus i

▶ qavail, nomi ,t : the available reactive power capacity without
active power curtailment.

▶ aat−1, a
b
t−1, a

c
t−1: the previous action taken by the agent

across each phase.
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Reward Function

At a timestep t, the reward function, Rt(at , ot), to be maximized
is:

Rt =−

(
σu||vit ||∞ + σu||vot ||∞ +

∑
i∈{a,b,c}

σa1ait ̸=ait−1
+

∑
i∈{a,b,c}

σ0∥ait∥2 +
1

|U|

|U|∑
j=1

σp

(
1−

pj ,t
pmax
j ,t

)2)
This reward seeks to encourage the agent to
▶ Minimize system maximum voltage oscillations
▶ Minimize the worst case voltage imbalance
▶ Minimize number of VV/VW re-configurations
▶ Encourage the VV/VW parameterizations to

remain close to their default values
▶ Minimize active power curtailment
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Simulation Results - Scenario

▶ Unbalanced IEEE 37 node
test feeder

▶ Cyber-attack affects same
percentage of inverter
capacity at each node

▶ Red portion of circles
represent unstable inverter
capacity

▶ Experiment 1: Compromised
inverters create voltage
imbalance

▶ Experiment 2: Compromised
inverters create voltage
oscillation
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Training Performance

0 10 20 30 40 50 60 70 80

−
1
4
0

−
1
1
0

−
9
0

re
w
ar
d

Adam ARS
ARS

0 50 100 150 200−
5
0
0

−
3
0
0

−
9
0

Epochs

re
w
ar
d

Adam ARS
ARS
PPO

Figure: Average training reward. The shaded area represents the standard
deviation over 10 runs.
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Simulation Results - Experiment 1
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Simulation Results - Experiment 2
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Final Remarks

▶ Oscillation policy is a linear policy

▶ Voltage bias compliant with IEEE 1547 standard

▶ Control law is completely local

▶ Control law requires no knowledge of the system

▶ No communication required

▶ Zero-trust control architecture

▶ Control law generalizes broadly to many different kinds of
DER (including demand response)
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Future works

▶ Optimal device settings under normal condition

▶ Extend to thermal loads/buildings experiments

▶ Electric vehicles and batteries
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Final Remarks

This work was sponsored by the Cybersecurity for Energy Delivery
Systems (CEDS) program within the Cybersecurity, Energy

Security and Emergency Response (CESER) Office at the U.S.
Department of Energy
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