Supervisory Parameter Adjustment for Distribution Energy Storage (SPADES) DOE CESER - CEDS Program

Subtask 3.2 - Red Team Attack Tests

© Siemens 2021 | Bruno Leao, Siddharth Bhela, Dan Grinkevich, Tobias Ahlgrim | Siemens Technology US | 2021-12-13

Attack KPIs (Qualitative)

Tier 1

- Power Delivery Disruption
- Instability (Oscillation)
- Voltage Imbalance
- Substation power factor

Tier 2

- Equipment useful life degradation
- Power Quality degradation (poor power factor or over/undervoltage conditions)

Attacks Associated to Tier 1 KPIs

- Power Delivery Disruption:
 - DER disconnection based on IEEE 1547
 - Line overloading (decrease in DER output or increase in load)
 - Transformer overloading
- Voltage oscillation:
 - Aggressive settings of volt-var, volt-watt curves and interaction with voltage regulators
 - Quick connect/disconnect of DER's and Loads or change of setpoints
 - Topology reconfiguration
 - Between feeders or within feeders
 - Repeated operation enable/disable regulator, capbanks or tap changes
- Voltage Imbalance:
 - Connect/disconnect single phase DERs/loads to create imbalance
- Substation Power Factor:
 - Connect/disconnect loads, DERs, capbanks

Attack Tests

L

Attack Tests Implementation

- Testing of all envisioned attacks have been performed in OpenDSS
 - Validation of attacks and their consequences
- Some of those attacks have also been implemented as prototypes in PyCIGAR
 - Useful for definition of best ways of integrating attacks to the framework
- Functionalities included in PyCIGAR
 - Flexibility to define start and end times independently for multiple devices and multiple attacks of same device
 - Definition of multiple types of attacks to each device
 - Implementation of classes corresponding to hacked devices/controllers
 - Additional input file for defining attacks that may include complex coordination of multiple devices in multiple points in time
 - Wrapper of input parser for processing of attack inputs and integrating them to the simulation
 - Also employed for processing computer network device information and creation of NetJSON representation.

Topology Reconfiguration Attack

- Attack Scenario:
 - Over/under voltage type PDD attack
 - Step 1: Open normally closed (NC) line or sectionalizing switch
 - Step 2: Close NO switch for radial topology reconfiguration (intra or inter-feeder)
 - Step 3: Repeat 1-2 to cause voltage oscillations (optional)
- Simulation Model (OpenDSS)
 - IEEE 37 bus
- Attack implementation in PyCIGAR
 - ✓ Implementation of Hacked controllers/devices
 - (Hacked switch controller)
 - ✓ Attack parameters: Change topology for defined time
 - ✓ Results: Allow the change of topology based on predefined topologies in PyCIGAR

Topology Reconfiguration Attack (Intra-feeder)

Tests Performed

Close 741-720 and Open 702-713

Test Results (explanation, outcome of tests)

 Feeder is longer after reconfiguration and experiences lower voltages towards the end of the feeder

Topology Reconfiguration Attack (PyCIGAR)

Tests Performed

0.957

0.950

Modify basic topology of IEEE 3 network by utilizing a hacked switch

• Close Switch S2 and open Switch S1 Attack is executed twice

Test Results (explanation, outcome of tests)

- Load S703 is connected to Transformer
- Voltage of Load S703 increases

Load/DER Disconnect Attack

- Attack scenario
 - Voltage Imbalance type attack
 - Selective load shedding/increase on a single phase to worsen phase imbalance
 - Repeated actions could also cause oscillations (optional)
- Simulation Model (OpenDSS)
 - IEEE 37 bus
- Attack implementation in PyCIGAR
 - ✓ Implementation of Hacked controllers/devices
 - (Hacked Load Device and Hacked load controller)
 - ✓ Downscale load in IEEE 3 bus system
 - Attack parameters: scaling of load according to provided scaling factor for a defined time
 - $\checkmark\,$ Result: Allow the scale loads at any node in PyCIGAR

To be done:

- Discuss and implement phase specific downscaling
- Test implementation for single phase downscaling

Load Disconnection Attack - Voltage Imbalance

Tests Performed

• Open S701a, S714a, S738a

Test Results

• Disconnecting several large single-phase loads worsens imbalance between red and blue phases. Combining with topology reconfiguration also degrades the voltage.

SIFMFNS

Load/DER Disconnect Attack – Load scaling in PyCIGAR

Tests Performed

- Downscale the load of Load S701 in the IEEE 3 network according to the attack input
- Attack input is a scaling factor of 0.9 in the first attack and 0 in the second attack Test Results
- > Voltage on node S701 increases depending on the amount of down scaling.
- Second attack represents a load drop.

Next steps:

Explore Load scaling for different phases

Original Simulation (IEEE 3 with no initial scaling factors applied and 500 simulation steps)

Simulation with Downscaling attack on node S701. (IEEE 3 with no initial scaling factors applied and 500 simulation steps)

SIFMFNS

Regulator Attack

- Attack scenario
 - Over/under voltage type PDD attack
 - Disable regulator, or reverse delay settings for multiple regulators
 - Repeated actions could also cause oscillations (optional)
- Simulation Model (OpenDSS)
 - IEEE 37 bus, IEEE 123 bus
- Attack implementation in PyCIGAR
 To be done:
 - Extend regulator class
 - Implement hacked component classes
 - Extend red team parser
 - Define attack parameters
 - Test attacks

Regulator Attack (Disable)

Tests Performed

• Disable regulator

Test Results (explanation, outcome of tests)

• Disabled regulator brings down the voltages for the entire feeder (IEEE 37 Bus)

SIFMFNS

Regulator Attack (Reverse time delay)

Tests Performed

Page 14

• Change the delay setting of substation LTC to act after line regulators

Test Results (explanation, outcome of tests)

• Reverse delay, ie., substation LTC has a longer delay than line regulators raise voltages

© Siemens 2021 | Bruno Leao, Siddharth Bhela, Dan Grinkevich, Tobias Ahlgrim | Siemens Technology US | 2021-12-13

SIEMENS

Regulator Attack (Reverse power)

Tests Performed

• Reverse power flow through regulator (RevRegTest.dss)

Test Results (explanation, outcome of tests)

• Reverse power through regulator pushes up voltages if reversible setting for regulator is not enabled

• With regulator, reversible=yes, revneutral=yes

no reverse regulator setting

 Page 15
 © Siemens 2021 | Bruno Leao, Siddharth Bhela, Dan Grinkevich, Tobias Ahlgrim | Siemens Technology US | 2021-12-13

Regulator Attack (Reverse power)

Tests Performed

• Reverse power flow through regulator (RevRegTest.dss)

Test Results (explanation, outcome of tests)

 Reverse power through regulator changes voltages drastically if reversible=yes for regulator, but revneutral=no

With regulator, reversible=yes, revneutral=no

Capbank Attack

- Attack scenario
 - Over/under voltage type PDD attack
 - Disable regulator, or reverse delay settings for multiple regulators
 - Repeated actions could also cause oscillations (optional)
- Simulation Model (OpenDSS)
 - IEEE 123 bus
- Attack implementation in PyCIGAR

To be done:

- Identify and define or extend the necessary classes
- Implement hacked component classes
- Extend red team parser
- Define attack parameters
- Test attacks

Capacitor Attack (Disable)

Tests Performed

• Disable capbank – can modify capcontrols as well, IEEE 123 bus

Test Results (explanation, outcome of tests)

Disabling capbank reduces feeder voltage

Energy Storage Attack

- Attack scenario
 - Manipulate active/reactive power setpoints
- Simulation Model (OpenDSS)
 - TBD
- Attack implementation in PyCIGAR
 - ✓ Implementation OF hacked classes
 - ✓ Extended red team parser
 - To be done:
 - Define attack parameters and scenarios
 - Integrate attack specifics in hacked classes
 - Test attacks

Attack Costs/Budget

L

NetJSON to overlay Computer Network information

- Features
 - Configuration of devices
 - Monitoring data
 - Network topology
 - Routing information
- Adds the ability to define the IP network communication paths and firewall/access rules

Net{JSON}

NetJSON Generation

Sample Input and Output

Sample input files

Devices:

device,property_dict controlcenter, {"type":"control_center"} network_switch1, {"type":"switch"} network_ids1, {"type":"ids"} network_firewall1, {"type":"firewall"} network_switch2, {"type":"switch"} network_firewall2, {"type":"firewall"} network_switch3, {"type":"switch"} network_firewall3, {"type":"firewall"} ntp_clock1, {"type":"ntp_clock"} hackme wifi, {"type":"wifi router"}

Connections:

device_a, device_b, property_dict inverter_s701a, network_switch1, {"type":"wired"} network_switch1, network_ids1, {"type":"wired"} network_ids1, network_firewall1, {"type":"wired"} network_firewall1, controlcenter, {"type":"wired"} inverter_s702a, network_switch2, {"type":"wired"} network_switch2, network_firewall2, {"type":"wired"} network_firewall2, controlcenter, {"type":"wired"} inverter_s703a, network_switch3, {"type":"wired"} network_switch3, network_firewall3, {"type":"wired"} network_firewall3, controlcenter, {"type":"wired"} network_firewall3, controlcenter, {"type":"wired"} network_firewall3, controlcenter, {"type":"wired"} network_firewall3, controlcenter, {"type":"wired"}

Resulting NetJSON (Output)

"type": "NetworkGraph",],
"label": "Devices",	"links": [
"protocol": "static",	{
"version": null,	"source": "inverter_s701a",
"metric": null,	"target": "network_switch1",
"nodes": ["properties": {
{	"type": "wired"
"id": "inverter s701a",	}
"properties": {	},
"type": "pv_device"	{
}	"source": "network switch1",
},	"target": "network_ids1",
{	"properties": {
"id": "inverter_s702a",	"type": "wired"
"properties": {	}
"type": "pv_device"	},
}	{
},	"source": "network_ids1",
{	"target": "network_firewall1",
"id": "inverter_s703a",	"properties": {
"properties": {	"type": "wired"
"type": "pv_device"	}
}	},
},	{
{	"source": "network_firewall1",
"id": "controlcenter",	"target": "controlcenter",
"properties": {	"properties": {
"type": "control_center"	"type": "wired"
}	}
},	},
]}

SIEMENS

Sample NetJSON Node Graph

- Node graph created based on the sample input file
 - Contains devices and link
 - In practical applications, device properties will contain information such as:
 - Attack costs
 - Communication paths
 - Firewall rules

SIEMENS

Contact

Bruno Paes Leao Siemens Corporation, Technology 755 College Road East Princeton, NJ 08540 USA

E-Mail: bruno.leao@siemens.com

Web: https://www.siemens.com/research

