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List of Acronyms
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● CEDS - Cybersecurity for Energy Delivery Systems
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Introduction
Increasing adoption of Distributed Energy Resources (DER), specifically rooftop photovoltaic
(PV) generation systems and Battery Energy Storage Systems (BESS), is challenging many
conventionally-held models and practices regarding the operation of the electric power system.
While the presence of PV and BESS devices gives individuals and communities the ability to
self-generate a portion of their load and participate in providing services to the grid, they also
make proper management of the power system more difficult as many DER are not
utility-owned/operated. With the recent changes in regulations allowing DER to gain entry into
wholesale markets [1], these challenges will undoubtedly increase as more DER asset owners
and aggregators seek to take advantage of new revenue streams. Given the superlinear nature
of expected growth in the storage market specifically (see Figure 1), it is likely that addressing
these challenges will become increasingly important in the near term.

Figure 1 - Project growth of electric storage market1

Technical specifications governing the testing, interconnection, and behavior of DER are
necessary to ensure the safe and reliable operation of the power system as more renewable
generation sources are brought online. Of particular interest is the functionality included in the
relevant standards that outlines DER behavior in response to changes in local grid conditions
sensed at the point of interconnection [2-4]. These autonomous control functions essentially
enlist DER to help correct undesirable frequency, voltages, and power factors and (in theory)
provide a mechanism to allow DER to mitigate power quality issues that they themselves can
introduce in grids with high penetrations of renewables.

1 Source: United States Distributed Energy Resources Outlook: DER Installations and Forecasts, 2016-2025E (Wood Mackenzie)
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While the standardization of DER control functionality through IEEE 1547-2018 provides
mechanisms for DER to regulate their power injections in response to local grid conditions, the
remote update capability of DER constitutes a significant expansion of the cyber attack surface
[2]. Via remotely updating the settings of standardized control functions in aggregations of DER,
malicious entities could substantially alter grid conditions with relatively small adjustments to
parameters of individual devices. Small changes to individual DER may seem innocuous at the
device level, making attacks difficult to discern. However, if enough DER with standardized
control behavior adjust their control parameters and/or setpoints, even just a little, they could
destabilize the feedback interconnection between DER aggregations and the grid [3] or create
deleterious power quality issues [4]. Both outcomes could cause damage to sensitive devices
or device disconnection from the power grid, further disrupting the provisioning of electricity.
Storage devices, in particular, further extend the cyber attack surface compared to photovoltaic
systems as they not only adopt the same control functionality outlined in IEEE 1547, but are
capable of acting as a load or generation source (somewhat) independently of available
sunshine.

On the other hand, the same standardized control functionality and remote update capabilities
of DER devices can be leveraged to mitigate the effect of cyber attacks on both DER and the
electric grid in real time. Previous work on the CEDS/RMT project CIGAR [5] demonstrated the
use of advanced control approaches to control non-compromised (i.e., devices which have not
had their settings adjusted as part of a cyber attack) DER to ameliorate the effects of attacks on
a portion of DER in a given grid.

While CIGAR focused exclusively on photovoltaic systems, the Supervisory Parameter
Adjustment for Distribution Energy Storage (SPADES) extends the types of DER considered to
include BESS devices. As DER systems do not exist in isolation (a grid will most likely not
solely consist of rooftop photovoltaic systems, for example), characterizing the complex
interaction across a heterogeneous device set is increasingly important to properly understand
the effects of cyber attacks on DER populations as well as determine mitigation strategies.
Indeed, as the attack surface becomes increasingly complex those seeking to develop
strategies to defend the system are simultaneously given more opportunities to implement
effective countermeasures.

This document outlines the progress made and results during the third and final year of the
SPADES project. SPADES sought to extend work conducted in project CIGAR developing
reinforcement learning and adaptive control approaches to update the settings of photovoltaic
generation systems to mitigate the effect of cyber attacks on PV systems in real time. SPADES
extends CIGAR via the addition of energy storage devices (e.g., electric batteries) in both the
threat models and the remediation strategies. While the first two years of SPADES focused on
power system modeling and algorithm design, year 3 focused on integration of the developed
mitigation algorithms into the National Rural Electric Cooperative Association (NRECA) Open
Modeling Framework (OMF) and red team testing of the SPADES algorithm (conducted by
Siemens Corporate Technologies). The following sections detail work performed during the
period between Jan. 1, 2022 - July 31, 2023 where the SPADES team focused on completing
Tasks 3 and 4 of the Field Work Proposal.
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Task 3 focused on Hardware-In-the-Loop (HIL) experiments at the LBNL FlexGRID facility and
validation of the performance of the developed control algorithms by the Red Team. The goal of
the Red Team was to disrupt the operation of battery storage devices and other DER in
simulation and to degrade the performance of the reinforcement learning controller in preventing
a cyberattack that disrupts DER ability to provide grid services. As part of this task, Siemens
developed an attack optimization engine to determine cyber attacks which would be the most
effective for a given distribution network topology and DER deployment.

Task 4 focused on integrating the defensive reinforcement learning-based agent into the
NRECA Open Modeling Framework (OMF) simulation tool. This capability will allow utility users
to upload their network models, choose a desired ESS mode of operation, and conduct
simulations to evaluate the effectiveness of the defensive agent to defend against user-selected
cyberattacks.

Both Tasks 3 and 4 were completed prior to Dec. 31, 2022, but, due to remaining subcontractor
budget, the project was granted a no-cost extension until July 31, 2023. During this period, the
following activities were undertaken:

● NRECA extended the Open Modeling Framework interface to visualize key performance
indicators developed by the red team. If enabled by the user, this feature will allow the
visualization of metrics used by the red team optimization module to gauge the
effectiveness of cyber attacks on DER.

● Siemens experimented with parallelization of the Monte Carlo Tree Search (MCTS)
attack optimization engine using LBNL’s Lawrencium supercluster. While the no-cost
extension period ended before the parallelization of the MCTS optimization engine was
completed, this effort laid the groundwork for enhanced efficiency and performance of
the red team optimization engine which could be completed in later efforts by the
Siemens team.

● LBNL developed a set of python notebook tutorials illustrating the use of the PyCIGAR
software developed in SPADES. The tutorials showcase the use of the algorithms in
mitigating attacks on use cases identified in Subtask 1.4 and illustrate how to adjust the
cyber attack scenario, reinforcement learning training parameters, and the electric grid
topology, and will serve as training materials for parties wishing to gain a deeper
understanding of the software developed in SPADES. These tutorials will be made
available on github following the public release of the PyCIGAR software developed in
this project (scheduled for August 2023).

The following sections detail work undertaken in Tasks 3 and 4 as well as the no cost extension
period. First, a discussion of work undertaken in Task 3 (Red Team experiments) is presented,
followed by a discussion of work undertaken in Task 4 (OMF Integration). These discussions
will include all work occurring during year 3 of the project, as well as the no cost extension
period.
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Task 3 - Hardware in the Loop (HIL) Experiments and Red Team
Activities

HIL Experiments and Simulations

Use Case Overview
Hardware in the loop experiments designed to showcase the effectiveness of the reinforcement
learning control algorithms developed in the SPADES project (in Task 2) and utilizing real time
data obtained from LBNL’s FlexGrid facility were conducted in the fall of 2022. These
experiments were modeled on a real use case provided by NRECA. A description of the use
case is now provided.

Okracoke Island, North Carolina, is a popular tourist destination which is connected to the
mainland via a single line. The island has on-site generation options including a diesel
generator, battery storage system, and some photovoltaic systems. In periods where the
connection to the mainland grid is severed, the generation sources on the island are responsible
for meeting electricity demand. Additional details of the electricity generation on the island are
as follows.

● Peak demand: 5 MVA (summer); 1 MVA (winter)
● PV Penetration: 1% (up to 15% used for demonstration purposes)

○ 15 kW PV on top of the diesel generator housing at substation
○ Very little residential solar

● Diesel generation of 3MW.
● Battery Energy Storage: 0.5 MW / 1 MWh

○ Serves the load through the time it takes to start diesel generator (about 10
minutes)

Figure 2 - Properties on Okracoke Island
Figure 3 - Okracoke Substation circuit map.
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In this scenario, a microgrid consisting of utility-scale PV, battery storage system and diesel
generation works alongside residential PV and battery storage system to support a specific
section of the full circuit. This scenario models an outage during the early stages of hurricane
Irene, which made landfall on North Carolina’s Outer Banks around 8am on August 27, 2011.
The experiment takes place between 15:00 and 19:00 on August 26, 2011, when strong winds
were beginning to fell trees. At 16:00, a vulnerable section of line is damaged and the downline
system goes into backup/islanded mode. The battery is used to serve the load while the diesel
generator starts up.

Figure 4 - Substation power for the Okracoke Island use case with hybrid PV and BESS.
Substation power is lost at 16:00 and the battery discharges until the diesel generator can take

load at 16:30. The battery then supplements as needed to maintain service.

HIL Description

Hardware in the loop experiments occurred during the fall of 2022 and utilized components from
LBNL’s FlexGRID facility [6]. FlexGRID enables real-time analysis of demand, renewables,
inverters, and storage in a hardware and software co-simulation environment. The facility
allows researchers to develop technologies and controls that span both the supply and demand
sides of the power system. The facility is highly instrumented and submetered and features an
array of controllable/programmable devices including:

● Three 14.6kW (total) photovoltaic systems (rooftop mounted)

● Three sets of Tesla PowerWall batteries (19kWh total)

● Three 7.6kVA Solar Edge inverters

● Micro synchrophasor measurement units

● Ametek MX-30 regenerative power supply

● Opal-RT grid simulator

● Bidirectional CHAdeMO EV charger
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Figure 5 - Rooftop photovoltaic systems located at LBNL’s FlexGRID facility.

Figure 6 - Tesla PowerWall battery storage devices located at LBNL’s FlexGRID facility.
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Experiment Description and Results

In the scenario considered in the experiments, distributed storage assets are being utilized to
support the load in the lost section of Okracoke island, but a cyber attack has deactivated all of
the distributed battery systems on a specific phase of the island, creating a large voltage
imbalance. Voltage imbalances can cause outsized current imbalances in three phase motors
which can, in turn, cause excessive heating and winding burnout. In these conditions, motors
should be derated or disconnected from the system. The algorithms designed by the SPADES
team will seek to minimize the level of voltage imbalance in the network, thereby preventing
damage to/disconnection of motors and other sensitive devices.

Hardware in the loop experiments involved the use of the rooftop photovoltaic systems and the
Tesla PowerWall batteries from FlexGRID. Solar production data obtained from real time
measurements of the rooftop photovoltaic systems were used as inputs in an OpenDSS
simulation of the IEEE 37 node test feeder, which is a suitable representation of the distribution
system circuit on Okracoke. As the goal of the SPADES project is to develop algorithms to
mitigate attacks without compromising the provisioning of existing services being provided by
battery storage systems, the SPADES team designed an algorithm that uses excess capacity of
battery storage devices to inject/consume reactive power to mitigate large voltage imbalances.
A detailed overview of the algorithm design and simulation results for this attack vector can be
found in associated publications [7,8].

Real time measurements of Tesla PowerWall active power injections were used to determine
excess battery inverter capacity, which was then used as an upper limit on the amount of
reactive power which could be sourced/sunk by each battery. This reactive power upper limit
was incorporated into simulated battery systems in OpenDSS. The SPADES team chose to
simulate battery reactive power injection capabilities rather than command reactive power
injections in the Tesla PowerWall units as the PowerWalls included at FlexGRID do not support
this feature. However, this capability is expected to be available in future battery systems which
are compliant with IEEE 1547. With this reactive power upper limit obtained from the
PowerWalls now input into the OpenDSS simulation, the algorithms developed in Task 2 of the
SPADES project (having been trained in an offline environment) were used to adjust the reactive
power injection of simulated battery storage devices to mitigate a cyber attack designed to
create large voltage imbalances.

The results of a single experiment are shown in Figures 7 and 8, which depict the three phase
voltage profile of a node which experienced the worst case voltage imbalance in this
experiment. The left hand subplots show the voltage profile and the right hand subplot shows
the per unit reactive power injection for the storage device at this node (reactive power injected
per phase). Figure 7 depicts the voltage profile and reactive power injection without supervisory
control determining new reactive power setpoints (i.e., without the SPADES algorithm). Figure 8
depicts the three phase voltage and reactive power injection with the SPADES algorithm
determining new reactive power setpoints. The reduction of voltage imbalance between Figs. 7
and 8 is quite clear, as is the difference in the amount of reactive power injected. Interestingly,
in observing the reactive power injection in Figure 8, which enabled the reduction in voltage
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imbalance, the reactive power is consumed on one phase and injected on another. This
non-uniform response highlights the benefit of using reinforcement learning and neural networks
as these approaches can produce more complex and nonlinear control actions to achieve their
objectives.

Figure 7 - Plots showing the three phase voltages (left-hand subplot) and the battery reactive
power injections (right-hand subplot) without additional reactive power injection provided by the

SPADES algorithms. The voltage imbalance is clearly seen in the left hand subplot.

Figure 8 - Plots showing the three phase voltages (left-hand subplot) and the battery reactive
power injections (right-hand subplot) with additional reactive power injection provided by the

SPADES algorithms. The level of reduction of voltage imbalance is clearly visible compared to
Figure 7.

Another experiment was conducted where distributed batteries are used to perform a peak
shave for Okrakoke. Results of this experiment are shown in Figs. 9-13. Similar to the previous
experiment, in this case an attacker shuts down all of the distributed storage assets contributing
to the peak shaving effort on a certain phase in the network, causing a large voltage imbalance.
The following figures demonstrate the effectiveness of the SPADES algorithm in controlling
reactive power injections using excess inverter capacities of storage devices to mitigate the
effect of the voltage imbalance attack.

Figures 9 and 10 show the substation active power profile along with the upper limit of active
power which is to be provided by the substation with and without SPADES control. Figures 11
and 12 show the average and worst case voltage imbalance with and without SPADES control.
Figure 12 shows the reactive power output of different batteries during the experiment. Only the
battery reactive power output with SPADES control is shown, as otherwise these values are
always 0.

As previously discussed, the SPADES controllers are designed to defeat cyber attacks without
compromising the level of service being provided by the battery storage systems. As is shown
in Figs. 9 and 10, the peak shave provided by the batteries is not degraded through the use of
reactive power injections from the SPADES algorithm (i.e. Figs. 9 and 10 are virtually identical).
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The level of voltage imbalance reduction is easily visible in comparing the worst case and
average imbalance levels seen in Figs. 11-12, where SPADES control reduced voltage
imbalances by approximately a percentage point (both worst case and average imbalance).
The reactive power injections from individual batteries is shown in Figure 13, which shows a
negative injection for some devices, indicating that these batteries are consuming reactive
power.

In both experiments, SPADES algorithms were able to ameliorate the cyber attack designed to
create voltage imbalances without compromising the service being provided to the grid by the
battery storage devices.

Figure 9 - Active power at the substation node after distributed batteries are used to makeup for
a generation shortfall. The yellow dotted lines represent the upper allowable limit of power to be

provided by the substation. This case is without any SPADES control.

Figure 10 - Active power at the substation node after distributed batteries are used to makeup
for a generation shortfall. The yellow dotted lines represent the upper allowable limit of power to

be provided by the substation. This case is with SPADES control.
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Figure 11 - Worst case and average voltage imbalance in the simulation experiments without
SPADES control.

Figure 12 - Worst case and average voltage imbalance in the simulation experiments with
SPADES control.

Figure 13 - Battery reactive power injections with SPADES control. Note that some power
injections are negative, indicating that reactive power is being consumed.
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Red Team Experiments
The Red Team, led by Siemens, was tasked with developing approaches to circumvent or
degrade the performance of the SPADES algorithms. To that end the Siemens Red Team
created a software addition to the SPADES software framework to introduce cyber attacks
against smart inverters, energy storage systems, and legacy distribution system regulation and
protection equipment. Siemens utilized a Monte Carlo Tree Search-based optimization
approach to create attacks to maximize several Key Performance Indicators (KPIs). Some of
the KPIs which the Monte Carlo Tree Search algorithm sought to maximize were:

1. Power Delivery Disruption: this is a function of the number of loads disconnected and the
associated duration

2. Voltage Oscillations: created through destabilizing the feedback interconnection between
DER smart inverter voltage regulation functions and the power grid

3. Voltage Imbalances: created through shutting off loads on certain phases of the feeder
or adjusting DER smart inverter voltage regulation control parameters

The Siemens red team experiments were able to determine cyber attack scenarios (network
topologies, DER deployments, etc.) for which the SPADES algorithms were ineffective. The
major conclusion of the Red Team experiments is that the SPADES algorithms suffer
from degraded levels of performance when applied to cyber attack scenarios outside of
their training set. Thus, it would behoove researchers studying this technology to look
for methods to enhance the training set to ensure the appropriate levels of robustness to
changing attack scenarios, or investigate other means to switch control policies as the
environment is adjusted. An example of an effective Red Team scenario is shown in Figure
14, where the Red Team optimization algorithm periodically adjusted the attack scenario
parameters to defeat the SPADES algorithm.

Detailed description of the Red Team attack architecture, the Monte Carlo Tree Search
algorithm, and efforts to speed up computational burdens of the Monte Carlo Tree Search
algorithm are provided as an appendix to this report.
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Figure 14 - Example of Red Team attack which continually adjusted the settings of DER devices
in an experiment. The SPADES controllers were ineffective in mitigating the increasing levels of

voltage imbalance in this experiment.
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Open Modeling Framework Integration
This section details the user interface developed by NRECA to set up and visualize experiments
of the SPADES algorithm in the Open Modeling Framework 2(OMF). OMF users can interact
with the cyberInverters module to upload network models, configure the details of the cyber
attack, conduct experiments, and view and download experimental results.

Model Input Interface
The Model Input interface is shown in Fig. 15, where the user can specify different parameters
of the simulation. As is shown in the model, the user is responsible for determining the start
time and length of the simulation as well as specifying the network model and various
configuration files that specify the details of the experiment. A description of the input files is
provided below:

Figure 15 - cyberInverters Model Input user interface

Attack Specification Files:

● Attack Agent Node Data File - a .csv file containing data that pertains to an attack to
individual nodes on the circuit

2 https://www.omf.coop/
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● Attack Agent Switch Data File - a .csv file containing data that pertains to an attack to
individual switches on the circuit

● Attack Agent Regulator Data File - a .csv file containing data that pertains to an attack to
individual regulators and/or capacitors on the circuit

Note that template data files can be downloaded from the OMF interface which can then be
configured by the user. The Model Input screen also allows users to specify the type of learning
algorithm used for model training (if more than one algorithm is supported). The user can select
the learning algorithm from the drop down menu that allows choosing from a list of predefined
algorithms that will specify how the defense agent is trained (user must also choose to train
defense agent). The Learning Algorithm dropdown menu is shown in Fig. 16.

Figure 16 - Dropdown menu to choose learning algorithm in cyberInverters user interface.

Visualization
This section discusses how the results of experiments are visualized in the OMF. An example
model input is shown in Fig. 17. After providing the necessary configuration files and selecting
the learning algorithm (in the screen below, this drop down menu is referred to as
Defensive Agent Variable”, but this has been changed in the final version of the software) the
user can either choose to train a new agent or run the model with an existing agent.

Figure 17 - Relevant model inputs for run 3 (voltage imbalance attack/LBL’s defense)
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It should be noted that at the time of the writing of this report, agent training can be time
consuming depending on the size of the distribution network and the parameters of the learning
algorithm.

Example results are now shown in the figures below.

Figure 18 displays the nodal voltage and active and reactive power outputs of inverters
associated with battery storage systems at 3 nodes in the example system. The top two plots
show the outputs associated with storage devices/inverters that have had their settings changed
as part of a cyber attack (these are identified as “adversarial_inverters”). An inverter whose
settings are being adjusted by the SPADES algorithm is shown in the bottom sub plot. The raw
time series data can be downloaded as well.

Figure 18 - Inverter outputs for a voltage imbalance attack using the defensive agent trained by
LBNL.

In the no cost extension period, NRECA added visualization capabilities for the Key
Performance Indicators used in the Red Team experiments. An example showing visualization
of voltage imbalances is shown in Fig. 19
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Figure 19 - Triplex meter imbalances for a voltage imbalance attack using LBNL’s defensive
agent.

The KPIs which are presently displayed in the OMF are:

● Voltage Oscillation over time - A summary value that quantifies the oscillation magnitude
for each second

● Voltage Imbalance over time - A summary value that quantifies the imbalance magnitude
for each second

OMF Integration Conclusions/Future Work
Integration of the SPADES defensive algorithms into the OMF has revealed several ways in
which the user experience can be improved. At present, the OMF currently struggles to support
the training of defense files due to limited computational resources. As of June 2023, The most
practical way for OMF users to train defensive agents is to provide the specification to LBNL
who would train the agents using HPC resources and then return the agents to the OMF. With
the SPADES project ending, this will hinder OMF users from efficiently training their own
defenses on a given circuit configuration.

In the future, several options could be adopted to improve the user experience:

● Option 1) Use fewer resources but extend the training time
○ Add user-facing messaging that asks them to be patient, with a rough estimated

time of completion or a % progress bar. This still doesn’t fit the OMF deployment
environment, e.g., if multiple users try to train a defense.

● Option 2) Acquire computational resources from the cloud on-demand
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○ This is highly recommended: OMF deployment environments lack GPUs,
sufficient computational resources.

○ GPUs are much less expensive on-demand than provisioning the OMF
deployment servers with GPUs that could meet maximum demand.

○ Due to time limits, this feature has not been implemented.

Additionally, the NRECA team has identified additional outstanding questions and possible
solutions that should be considered in any follow-on work:

How do we authorize OMF users to access computational resources needed to train the
defensive agents?

Options considered:

1. Authorize any defense training by default for all users
a. This option does not adequately bound compute cost adequately.

2. By request / approval only
a. Benefit: maximum control over costs.
b. But: this option discourages experimentation, and requires human intervention for

experimentation.
3. Contingent upon payment

a. Benefit: shifts training costs to users.
b. But: high complexity for small anticipated cost savings, while constraining

impromptu experimentation.
4. (Low) rate limited by default, more by authorization

a. best anticipated cost/convenience/maintenance compromise.

How do we install and run the defense training environment?

Options considered:

1. Single cloud provider
a. Simple and probably optimal

2. Two or more pre-configured cloud providers
a. Potential runtime savings
b. Likely too much trouble

3. Abstraction layer via infrastructure automation, e.g., Terraform
a. Maximal potential agility, cost-savings
b. Stack complexity and development time likely not worth the effort

4. Standalone application provided to users to train agents using their own computational
resources

a. Need to design solutions that requires minimal configuration on part of user
(automatic detection and utilization of available computational resources)
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Conclusions and Recommendations
The major conclusion of the SPADES project is that the use of adaptive control and
reinforcement learning are effective approaches to act as supervisory controllers for DER
(photovoltaic and battery storage devices) to ameliorate cyber attacks on aggregations of
DER in distribution networks. When portions of DER in a given network have had their
control parameters adjusted maliciously, SPADES supervisory controllers can adjust the settings
of non-compromised DER to mitigate the attack in real time. Interested readers can review
previous reports and presentations of the SPADES project to understand the algorithms and
attack vectors in detail3.

Interestingly, the SPADES team also discovered that the effectiveness of the algorithms in
mitigating attacks is heavily dependent on distribution system network topology, the locations
and capacities of DER which have been attacked, and the locations and capacities of DER
which are used for defense. When the attack is more evenly distributed across DER in a
given network, the algorithms developed in SPADES are effective where up to
approximately 40% of DER (by installed inverter capacity) are compromised. When the
attack affects larger percentages of DER capacity, there simply is not enough DER capacity
available to completely mitigate the attack. However, even though attacks cannot be entirely
mitigated, the SPADES algorithms have consistently shown that attacks on DER smart
inverter control settings can be ameliorated by controlling whatever DER is available.
Thus, the algorithms produced in this project could enhance the cyber resiliency of a network
even if installed in a single device. The positive effects in mitigating attacks will grow with
increasing numbers of devices using the SPADES algorithms.

The major result of the red team experiments showed that the performance of the SPADES
algorithms was degraded when tested in networks different from the network used to generate
the reinforcement learning algorithm training data. Two conclusions can be drawn from this
result. The first is that the SPADES solution should be effective if agents can be trained on a
network-specific basis. This has implications for entities wanting to implement the SPADES
solution as this may require computational resources not traditionally found within utilities
(certainly for electric cooperatives). Secondly, the reinforcement learning training architecture
adopted by the SPADES team does not result in policies that are sufficiently generalizable to
different network topologies. Further effort could be expanded to improve how
reinforcement learning agents are trained for DER cybersecurity so that a single agent is
effective for differing network structures.

In addition to the development of algorithms for DER cybersecurity, the research and
development conducted in the SPADES project has made substantial contributions to academic
literature, workforce development, and technology transfer. Through the 3 years and 7 months
of the project, five conference papers and eight journal papers have been published in high
impact venues (such as IEEE Transactions on Power Systems). A list of publications produced
by the project is available on the SPADES website. The project has supported three graduate

3 https://secpriv.lbl.gov/project/ceds-spades/
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students who have gone on to roles in EPRI, Span Inc., and the Midwest Independent System
Operator, as well as one postdoctoral researcher. The project has been presented to the NERC
Security Integration and Technology Enablement Subcommittee (SITES), the Department of
Defense, the Department of Homeland Security, Siemens, Northrop Grumman, and several
universities. Additionally, a patent on technology developed in SPADES has been filed by DOE
and is presently under review [9].

The project team wishes to thank the CESER Risk Management and Tools program and the
National Energy Technology Laboratory management team for their sponsorship and
management of the RMT program and the SPADES project.
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Appendix - Red Team Reports
The following section contains reports written by the Red Team (Siemens) detailing the red team
testing approach and experimental results. As the red team did not interact with the rest of the
SPADES project team during the project, these reports were independently written by Siemens
and are included here in their entirety.
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Introduction 
This report describes the work developed by Siemens Technology (ST) and corresponding results related 

to Subtask 3.2 as part of the Supervisory Parameter Adjustment for Distribution Energy Storage (SPADES) 

project. ST plays the role of red team in the project. Following the preliminary analysis of potential attacks 

developed as part of Subtask 3.1, the scope in Subtask 3.2 comprised the development of small proofs of 

concept with the goal of validating the proposed attacks, evaluating the requirements for producing these 

attacks in PyCIGAR and supporting the definition of proper approaches for the associated implementation. 

Proofs of concept have to a great extent been based on OpenDSS simulations using IEEE grid models. 

PyCIGAR implementations were also developed based on small manipulations of existing functionality for 

a prototype implementation of the new behaviors required for producing the attacks and their integration 

into the original framework. Those prototype developments were discussed with LBNL in order to define 

the changes required in PyCIGAR for final implementation of required functionalities.  

Besides the proofs of concept, the work in Subtask 3.2 also included initial implementation of means for 

representing computer network information associated to power systems in PyCIGAR. This information 

will be employed for definition and evaluation of attack costs which will in turn be used together with pre-

defined attack budgets to limit the action of the adversary in order to make the attacks more realistic. 

Detailed definitions of this approach can be found in Subtask 3.1 report. 

Attack Proofs of Concept 
This section describes the proofs of concept developed using OpenDSS and prototype implementations in 

PyCIGAR to evaluate the proposed attacks and guide the final implementation of functionality required 

for their execution. 

Focus was on system level attacks which adversely affect the power system behavior in the short (order 

of seconds) to medium term (order of minutes). These attacks can be a result of a single compromised 

component or a coordinated attack on multiple components that leads to network instability and/or 

power delivery disruption. KPIs for definition of successful attacks are described in detail in Subtask 3.1 

report. Based on discussions with NRECA and LBNL an additional Tier 1 KPI was included, corresponding 

to substation power factor.  Attacks that result in the substation power factor being out of the acceptable 

range, usually between 0.95 and 1.05, are considered successful as most distribution utilities will pay 

penalties to the transmission operator if they exceed these limits. Many of the attack types described 

below, such as the ones associated to connecting/disconnecting loads, DERs and capbanks, can affect the 

substation power factor. Below is an updated list of KPIs. They are currently defined qualitatively only: 

• Tier 1 

o Power delivery disruption, including 

▪ DER disconnection based on IEEE 1547 standard 

▪ Disconnection due to overloading of lines/transformers 

o Instability (oscillation) 

o Voltage imbalance 

o Substation power factor 

• Tier 2 

o Equipment useful life degradation 

o Power quality degradation (poor power factor or over/undervoltage conditions) 
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A single attack may affect multiple KPIs. For instance, a successful attack could cause voltage oscillations 

and imbalances simultaneously while also disrupting power delivery. All attacks considered here were 

discussed with project partners including LBNL and NRECA and verified as being reasonable and viable 

considering the project needs and real-world operation. 

PyCIGAR Integration 
For the PyCIGAR integration, prototype implementations were created and several design decisions were 

discussed with LBNL to provide a granular controllable environment for deploying attacks to the power 

system simulations during the execution of tests. Discussions and implementations were performed 

considering a separation of concerns between the core PyCIGAR functionality and the additional 

functionality required for deployment of attacks, referred here as “Red Team Addon”, and also the easy 

integration path for this Red Team Addon.  

Separation of Concern 
The PyCIGAR Framework is still evolving and improving. At the same time the Attack Addon prototyped 

by Siemens and discussed with LBNL will also evolve over time. Final integration and development of 

related functionalities will be developed by LBNL.  

In order to not interfere with the development of core functionality, the Red Team Addon was 

implemented as independently as possible, but still integrated with PyCIGAR. Controller and Devices 

implementing hacked functionality were developed which inherit the control functionality of the parent 

class they hack and are therefore capable of mimicking the same behavior as the corresponding non-

hacked classes. The handover of parameters to the simulation utilizes the existing infrastructure and 

modifies or adds to the existing parameters. Those classes are stored in a separate location and are 

accessible for use into PyCIGAR models using the usual means for importing and device registration. 

 

start

Create simulation 
parameters based 
on configuration 

files  

Create simulation 
environment

Obtain path for 
external 

configruation files

Create simulation 
components 

Run simulation

 

Figure 1: Workflow PyCIGAR 
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Figure 2: Workflow Attack Addon 

Comparing the PyCIGAR workflow for running a simulation (Figure 1) with the workflow using the Attack 

Addon (Figure 2) two additional steps are included. The registration of the hacked classes uses the same 

mechanism used by PyCIGAR, for instance: 

register_devcon('hacked_controller_pv', HackedControllerPV) 
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After the classes are registered, simulation parameters associated to the specific attack type are 

overwritten.  

Granular controllable environment 
The Red Team Addon enhances the current PyCIGAR functionality for attacks on the power grid. The 

addon enables the execution of multiple attacks defined independently over time, which is referred to 

here as horizontal scaling, and also provides means for executing various types of attacks affecting the 

same device/controller, which is referred to here as vertical scaling. These functionalities provide 

flexibility for the red team to attack different devices of the power grid represented in PyCIGAR during 

different times in the simulation.  

Horizontal Scaling 

Every configured attack in the Red Team Addon is associated to independent start and end times. During 

this period in the simulation the corresponding device will have its functionality affected. Each device can 

have more than one attack per simulation at different start and end times as long as there are no overlaps 

among their time periods. Figure 3 shows the differences in definition of a device where an attack takes 

place. Originally, attacks defined in PyCIGAR are configured by defining when the default controllers’ 

settings will be used and when the adversary controllers’ settings will be used, all at once. Through the 

new structure attacks can be individually designed. 

 

Figure 3: Horizontal scaling provided by Red Team Addon 

Vertical Scaling 

Hacked devices in Red Team Addon can provide the possibility to execute different kinds of attack. For 

each attack an attack type needs to be specified. The specified attack will be executed at the specified 

time and according to the defined duration. For each attack there are means for providing additional 

parameters to adjust the behavior according to the specific situation. The implementation of the various 

hacked behaviors are part of the hacked controller and respective hacked device classes. Figure 4 presents 

an example of part of the definition of a hacked component where different types of attacks can be 

triggered. 

 

Figure 4 - Vertical scaling provided by Red Team Addon 
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Easy integration 
To integrate the functionality of the hacked components, classes are developed that hold the functionality 

of the hacked devices and controllers. The classes corresponding to the hacked components inherit the 

functionality of the original classes from the PyCIGAR framework. The use of the hacked device classes 

follows the same principles as the regular ones: classes must be registered in PyCIGAR before the 

simulation, and they implement the correspondent alternative behavior executed during the simulation. 

Figure 5 presents an example of part of definition of a hacked PV device inheriting from the original PV 

device class. 

 

Figure 5: Example for implementation of HackedPVDevice 

Developed classes and their integration 
Table 1 presents hacked component classes developed as part of the work developed in Subtask 3.2. 

Table 1 - Hacked versions of devices and comtrollers implemented in Subtask 3.2. 

pyCIGAR class Addon class 
PVDevice HackedPVDevice 

BaseController HackedControllerPV, HackedControllerLoad, 
HackedControllerBattery  

SwitchController HackedSwitchController 

 

PyCIGAR workflow as depicted in Figure 6 is not changed in a significant way. During the attacks, hacked 

controllers provide commands to the hacked devices, where they are applied to the simulation. 

 

Figure 6: PyCIGAR workflow (provided by LBNL - Sy-Toan Ngo) 
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The only change in the diagram of  Figure 6  as a consequence of the Red Team Addon is the use of an 

additional input file defining the information and parameters for each attack. The attack parameters are 

parsed based on a wrapper defined around the original input parser defined in PyCIGAR. Figure 7 presents 

a high-level view of how the wrapper is structured. In the figure, network_settings refer to the 

representation of the computer network discussed in section Attack Budget and attack_settings 

correspond to the definition of the attacks as described above. 

 

Figure 7: High level view of the Red Team Addon parser which is a wrapper to the original PyCIGAR parser. 

Topology Reconfiguration 
For this attack scenario we consider that the attacker can take control of Normally Open (NO) and 

Normally closed (NC) and/or sectionalizing switches in the power network. In essence, the attacker can 

close any open switches and open any closed switches. Given the radial structure of most distribution 

networks an attacker can easily create islands. However, as outlined in Subtask 3.1 report we do not 

support islanded operations in this project and consider such attacks to be out of scope. Any attacks that 

reconfigure the topology to other radial structures (without creating islands) is still considered in scope 

and will be part of our potential attack vectors. Topology reconfiguration attacks aim to i) increase the 

overall length of the feeder to cause under/over-voltage conditions that may lead to disconnect of DERs 

(if limits are violated according to the IEEE 1547 standard) and loads; ii) overload certain lines and/or 

transformers to trigger protective devices and cause power delivery disruption (PDD). Repeated operation 

or switching of grid topologies can also lead to oscillations. Note that topology reconfiguration can be 

intra-feeder (within the same feeder) or inter-feeder (between two or more feeders). To demonstrate the 

effect of topology reconfiguration attacks we augmented the OpenDSS model corresponding to the IEEE 

37-bus network with additional switches as presented in Figure 8.  

An over/under voltage type PDD attack consists of the following steps: 

• Step 1: Open NC line or sectionalizing switch 

• Step 2: Close a NO switch to obtain a radial topology (intra- or inter-feeder) 

• Step 3: Repeat 1-2 to cause voltage oscillations (optional) 
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Figure 8: Modified IEEE 37-bus network. Red dashed lines denote the NO switches that were added to the base network 

 

Following steps 1-2, we opened the line connecting buses 702-713 (equivalent to opening a NC switch) 

and then closed NO switch connecting buses 741-720 on the modified IEEE 37 bus network. All tests were 

performed directly in OpenDSS. As seen in Figure 9, the feeder is longer after reconfiguration and 

experiences lower voltages towards the end of the feeder. Although the test here comprises only intra-

feeder reconfiguration, we also plan to consider inter-feeder reconfigurations in the future. Inter-feeder 

reconfigurations are more likely to cause overloading on lines and transformers due to the additional load 

that needs to be picked up. To mimic such a scenario in the intra-feeder reconfiguration setup we 
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uniformly scale the loads to cause overloading on a line and the substation transformer. Table 2 presents 

additional information.    

 

Figure 9: Comparison of voltage profiles before (left) and after (right) topology reconfiguration attack. 

Table 2 - Overloading on the substation transformer connected to bus 799 and the line 799-701. The first column shows the 
elements that are overloaded, the second and third columns show respectively the amount by which the current (amps) and the 

power (kVA) exceed the nominal ratings of the affected elements. 

 

For implementing the attack into pyCIGAR a new device class was developed. The pyCIGAR Framework 

was enhanced with a switch device class consisting of two dependent switches so that the opening of a 

switch is combined with the closing of another one for topology change. For testing purposes, the IEEE3 

network was used. Figure 10 presents the corresponding circuit diagram. 

Element  AmpsOver  kVAOver

Transformer.SUBXF   9.73 132740.4

Line.L35            42.42 336.01
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Figure 10 - diagram of the setup used to test topology reconfiguration attacks in PyCIGAR 

 

Two switches were introduced as presented in the figure. Switch 1 connects the busses 702 and 703. 

Switch 2 connects the busses 701 and 703. Through their dependability opening Switch 1 results in the 

closure of Switch 2 and therefore a topology change. The results of the changes in the topology performed 

through PyCIGAR are shown in Figure 11.The left picture shows the simulation without attack. The right 

picture shows the execution of the attack twice at different times within the simulation. The voltage on 

node S703 increases due to the direct connection to S701 after switching S1 and S2. To execute this attack 

with the Red Team Addon a HackedSwitchController was introduced which provides means for operating 

the two dependent switches to create a new topology. The class provides the possibility to execute one 

or several topology changes during a simulation. For final implementation it was agreed with LBNL that 

the reconfiguration possibilities will be pre-defined.  

   

Figure 11: Voltage results comparing normal operation and topology switching in IEEE 3 network 

Load/DER Disconnect Attack 
For this attack scenario we consider that the attacker can quickly connect/disconnect DERs or loads in the 

network by opening switches. The intent of these attacks is to do phase targeted connects/disconnects 

that directly impact the voltage imbalance KPI. In particular, selective load shedding/increase on a single 

phase can worsen phase imbalance. Moreover, repeated such actions could also cause oscillations. We 

demonstrate such an attack on the base IEEE 37-bus network through simulations in OpenDSS. The base 

case (see left panel of Figure 12) already has severe imbalance between phases “c” (black line) and phases 
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“a” (blue line) and “b” (red line). To worsen phase imbalance between phases “a” and “b”, we disconnect 

the following single-phase loads connected to phase a: (S701a, S714a, S738a). As evidenced from the right 

panel in Figure 12, the phase imbalance is indeed worsened between phases “a” and “b”. A similar affect 

could be achieved by bringing on additional single-phase load or DERs. Figure 13 presents the results of 

combination of load disconnect type attack with the topology reconfiguration attack. Such a combo attack 

degrades the voltage, while worsening imbalance at the same time. 

 

Figure 12: Comparison of voltage profiles before (left) and after (right) phase imbalance attack through disconnection of loads 
on phase a (blue line). 

 

 

Figure 13: Feeder voltage profiles after topology reconfiguration + phase imbalance attack 

For the integration of this attack to PyCIGAR additional classes were introduced through the Red Team 

Addon. The HackedLoadDevice and HackedControllerLoad represent together a hacked load and the 

means for manipulating such load. The attack is parameterized by a value defining the scale of change of 
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the load value. Figure 14 shows the test results of execution of this attack using PyCIGAR. On the left 

picture the simulation was executed with no attack. On the right picture the load was scaled down. Two 

attacks are performed where in the first one the load was scaled down with a factor 0.9 and in the second 

one a factor of 0 is used, which corresponds to a load shed. The voltage increases accordingly on node 

S701 in the IEEE 3 network. For each load that can be target of an attack, corresponding device and 

controller must be included in the simulation. 

  
Figure 14: Load scaling attack on IEEE 3 network. Left picture: No attack. Right picture: Load scaling with factor 0.9 and with 

factor 0 

Regulator Attack 
For this attack scenario we consider that the attacker can either: i) manually change taps on substation 

transformer load tap changers (LTC’s) and/or line regulators; ii) change settings for the operation of LTC’s 

or line regulators. Here we demonstrate the effects from the latter through OpenDSS simulations on IEEE 

feeder models. Such type of attack is intended to target the PDD KPI through creation of 

over/undervoltage conditions. Similarly to other cases, cycling changes could also be employed to cause 

oscillations. 

As a first test we disable the substation transformer LTC on the IEEE 37-bus feeder. As seen in Figure 15, 

the overall voltage profile (across all three phases) degrades significantly once the LTC is disabled. 

 

Figure 15: Comparison of Voltage profiles with default settings of regulator at substation transformer (left) and with regulator 
disabled (right). 
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The second attack consists of a coordinated effort to change delay settings of the LTC and line regulators 

on the IEEE 123-bus feeder. The default settings usually allow for a longer time delay on the LTC and 

shorter time delays on the line regulators. Here we reverse the delays such that the substation LTC acts 

after the line regulators. This reverse delay raises voltages as seen in Figure 16 and can lead to severe 

over-voltage conditions. 

 

Figure 16: Comparison of voltage profiles with default settings of substation transformer regulator and other line regulators 
(left) and with time delay settings reversed (right). This test was performed on the IEEE 123 bus network. 

 

 

Figure 17: Comparison of voltage profiles with default settings of substation transformer regulator and other line regulators for 
reverse power flow (left) and with regulator setting disabled for reverse power flow (right).  

The third attack is performed on a modified IEEE 123-bus network with high penetration of DERs. The 

DERs are modeled to create reverse power flow conditions in the feeder. The default settings for line-
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regulators bring the taps back to the neutral position on detecting reverse power flow. As shown in Figure 

17, disabling the reverse power flow setting can lead to over voltage conditions. 

The fourth attack changes the regulator settings to operate on reverse power flow but does not force the 

regulator taps to the neutral position. Essentially, the regulator works like it would under normal 

operating conditions. This interestingly leads to severe over voltage on two phases and undervoltage on 

one phase as presented in Figure 18 (left panel).  Such an attack could affect both the PDD KPI and the 

voltage imbalance KPI. The last attack combines the former (fourth) attack with the second attack to 

worsen voltage imbalance and undervoltage conditions. Corresponding results are presented in the right 

panel of Figure 18.  

 

Figure 18: Comparison of voltage profiles with regulator settings modified to operate to a non-neutral tap position under reverse 
power flow (left) and combination of previous attack with time delay settings reversed (right).  

 

Integration of the regulator attack in PyCIGAR has not yet been implemented, but it should follow the 

same methodology employed for the other attacks. The existing pyCIGAR regulator class will be used as a 

base to create attacked regulator classes. Change in regulator behavior corresponding to the attack will 

be implemented by encapsulating the corresponding OpenDSS API command employed in the OpenDSS 

tests described above.  

Capbank Attack 
This attack is similar to the load/DER connect/disconnect type attack. Here instead of loads or DERs, we 

explicitly target capacitor banks or other VAR compensation devices. One could disconnect individual 

phases of such devices to worsen voltage imbalance. Alternately, an attacker could also 

connect/disconnect three-phase devices to degrade voltage. Figure 19 shows the degraded voltage after 

disconnecting all capacitor banks on the IEEE 123 bus feeder. Such an attack could be used in conjunction 

with any of the previous attacks to cause severe voltage violations.   
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Figure 19: Comparison of voltage profiles with default settings of capbanks (left) and with capbanks disabled (right). This test 
was performed on the IEEE 123 bus network. 

 

This attack was not yet integrated in PyCIGAR but its integration should follow the same methodology 

employed for the other attacks. PyCIGAR currently has no implementation of capacitor banks. Additional 

discussions must be performed for definition of how to better encapsulate the behavior required for 

performing the attack. 

Energy Storage Attack 
This attack is also similar to the load/DER disconnect type attack. However, instead of explicitly 

connecting/disconnecting a device here we manipulate active and reactive power setpoints sent to the 

storage device. These setpoints could be 0, in which case this would be equivalent to disconnecting a 

storage device. Such an attack is targeted towards use cases where an energy storage device may be 

needed at a later point in the day. For instance, a storage device may be needed at the substation 

transformer for peak shaving to avoid overloading conditions. Subtask 3.1 report presents an analysis of 

possible related attacks. If the battery is simply disconnected it may be brought back online for the peak 

shaving operation. However, if the battery is provided malicious setpoints to drain it completely and/or 

spoof the measurements for the centralized controller, then it may not be available for peak shaving. This 

would then lead to overloading affect the PDD KPI. 

Currently, additional energy storage controllers are being defined in PyCIGAR by other team members for 

implementation of operating scenarios which are relevant for the project. Future plans of the red team 

include the implementation of more elaborate attacks aiming at those specific operating scenarios. A 

preliminary analysis of those scenarios and corresponding attacks was performed in Subtask 3.1. 

The integration of this energy storage setpoint manipulation attack in PyCIGAR is under development. The 

base of the hacked classes has already been implemented in the Red Team Addon. Additional discussion 

will be required for extending the attacks to specific operating scenarios. In PyCIGAR the battery 

controllers have different capabilities depending on whether they are distributed or centralized. Although 
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the basic exploitation scenarios apply to both of these cases, different implementations may be needed 

for those cases depending on the specific operating scenarios.  

Attack Budget 
The proposed approach for defining budgets for the attacker and associating costs to the attacks is 

explained in detail in Subtask 3.1 report. The purpose of this approach is to limit the reach of the adversary 

in a realistic way, while providing flexibility for definition of a large variety of attacks which may include 

combinations of multiple methods and targets. Budgets may be used for controlling how large an attack 

will be, and the red team may employ domain expertise or optimization methods to choose among the 

best attack options, i.e. attacks which will achieve greatest impact on defined KPIs, respecting such 

constraint. 

Real world attacks usually comprise multiple steps. In order to analyze or define such steps, besides the 

information of the effort/resources required to attack a certain target, it is also very important to 

understand how the computational devices are interconnected in computer networks. Currently, PyCIGAR 

does not support a way to define computer network and associated properties for individual devices. 

Therefore, subtask 3.2 also included the definition and development of means for integrating this 

information to PyCIGAR power system models. 

The NetJSON format was chosen for this task, as it consists of a powerful and flexible yet lightweight way 

of encoding computer network information: 

“NetJSON is a data interchange format based on JavaScript Object Notation (JSON) designed to describe 

the basic building blocks of layer2 and layer3 networking. It defines several types of JSON objects and the 

manner in which they are combined to represent a network: configuration of devices, monitoring data, 

network topology and routing information.”1. 

Therefore, NetJSON can be used to create a simple overlay of computer network information over the 

existing power system, which comprises the computational devices which are part of the power system, 

such as controllers, and additional computer network specific devices that do not directly play a role in 

the power system operation, such as routers or firewalls. In terms of implementation, additional input 

files are defined to contain: 

• information of computer network specific devices. 

• relevant properties associated to all computational devices in the network (including the power 

system ones).  

• information about how all computational devices are interconnected.  

Considering the properties of power system devices, the current implementation comprises the definition 

of default values for such properties within the corresponding PyCIGAR class definition so that those they 

can be transparently applied to all devices of the same type. However, the default values can be 

overwritten to be made specific to each component by means of the input files.  

Processing of input information to create the NetJSON representation was integrated into the parser used 

to create simulation configurations for PyCIGAR. NetJSON specification allows flexibility for associating 

 
1 https://netjson.org/docs/what.html 



17 
 

Siemens Corporation Technology 
 

any number or type of properties to each device. Those properties will be used to store information about 

the possible attacks and associated costs and relevant computer network information, such as firewall 

rules, for instance. 

Figure 20 presents sample input files defining computer network devices (left) and interconnections 

between them (right). 

 

 
  

Figure 20 - Sample input files for definition of computer network information. In real applications, device properties will include 
additional information such as attack costs. 

 

Figure 21 presents a simplified sample output in NetJSON format. 
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{ 

  "type": "NetworkGraph", 

  "label": "Devices", 

  "protocol": "static", 

  "version": null, 

  "metric": null, 

  "nodes": [ 

    { 

      "id": "inverter_s701a", 

      "properties": { 

        "type": "pv_device" 

      } 

    }, 

    { 

      "id": "inverter_s702a", 

      "properties": { 

        "type": "pv_device" 

      } 

    }, 

    { 

      "id": "inverter_s703a", 

      "properties": { 

        "type": "pv_device" 

      } 

    }, 

    { 

      "id": "controlcenter", 

      "properties": { 

        "type": "control_center" 

      } 

    }, … ], 

  "links": [ 

    { 

      "source": "inverter_s701a", 

      "target": "network_switch1", 

      "properties": { 

        "type": "wired" 

      } 

    }, 

    { 

      "source": "network_switch1", 

      "target": "network_ids1", 

      "properties": { 

        "type": "wired" 

      } 

    }, 

    { 

      "source": "network_ids1", 

      "target": "network_firewall1", 

      "properties": { 

        "type": "wired" 

      } 

    }, 

    { 

      "source": "network_firewall1", 

      "target": "controlcenter", 

      "properties": { 

        "type": "wired" 

      } 

    }, … ]} 

Figure 21 – sample excerpt of NetJSON representation of the computer network. 
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Once the computer network information is represented in NetJSON format, it is possible to perform 

various types of analysis and visualization. Figure 22 presents a graph depicting a sample NetJSON 

generated using the developed implementation. Nodes and edges correspond respectively to 

computational devices and their interconnections.  

 

 

 

Conclusion and Future Work 
This report presented the work developed by Siemens Technology (red team) corresponding to Subtask 

3.2 in the SPADES project. Preliminary implementations of attacks have been created in OpenDSS and 

some of them also included a prototype implementation in PyCIGAR. Those implementations and tests 

performed based on them have been employed for obtaining a better understanding and validation of 

the consequences of proposed attacks and also for evaluating the best approaches for implementing the 

associated functionality in PyCIGAR.  

The work developed in Subtask 3.2 also included the development of means for representing an overlay 

of computer network information on top of PyCIGAR power system models. This representation will be 

employed for evaluating and defining attack vectors subject to constraints imposed by attack budgets 

Figure 22 – Graph visualization of sample NetJSON generated using the developed implementation. 
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available to the attackers and attack costs corresponding to each action taken during an attack. 

Consideration of the computer network information and corresponding attack budgets/costs is expected 

to result in the definition of more realistic attack vectors compared to the same definitions based on the 

power system alone, contributing to the real-world applicability of the results achieved in the project. 

Next steps planned for the red team in the project, besides supporting implementation of attacks in 

PyCIGAR, comprise the beginning of tests based on the final implementations of attacks in PyCIGAR, 

including the optimization of such attacks and the evaluation of attack costs. Concerning the last item, the 

red team will work with LBNL and NRECA for definition of proper computer network information 

associated to the power systems under analysis. 
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Introduction 
This report describes the developments performed and results obtained by the Red Team (Siemens 

Technology) during the period ranging from January/2022 to November/2022 as part of the Supervisory 

Parameter Adjustment for Distribution Energy Storage (SPADES) project. During this period, the focus of 

the Red Team was in developing, implementing, and testing an optimization solution for designing 

cyberattacks to disrupt key performance indicators (KPIs) that quantify how well a power distribution grid 

is operating. Such design of cyberattacks takes into consideration a variety of power system devices which 

can be targets of attacks and the characteristics of the computer network connecting those devices. The 

power system devices and corresponding attacks as well as the computer network characteristics are 

considered to the extent previously defined as part of the project and documented in previous Red Team 

reports [1][2]. The ultimate goal of this effort is to employ the developed optimization tool for designing 

cyberattacks for testing the AI-based countermeasures developed by other members of the project team. 

This provides a context for testing that is considerably broader and more realistic compared to previous 

tests of the solution in terms of the actions taken by the adversary to disrupt the power system operation.  

In order to achieve the optimization solution, five different building blocks had to be developed and 

integrated: 

• Power System and KPIs: definition of a power system topology and corresponding 

implementation in OpenDSS/PyCIGAR; definition of KPIs and means to quantify them based on 

outcomes of the model simulations in PyCIGAR. 

• Attack implementation in PyCIGAR: modeling of all adversary actions which may affect the power 

system in PyCIGAR. 

• Computer network topology: definition of the computer network topology which connects the 

devices from the power system of interest and representation of such computer network in a 

format that can be properly employed for the optimization task. 

• Cyberattacks and costs: definition of possible actions an adversary can take when he has control 

over each of the devices or communication links in the computer network; each of those actions 

must be associated to a “cost” value which quantifies the effort associated with performing it. 

• Attack optimization methodology: definition of the method for combining the above information 

and obtaining a sequence of steps an adversary may take to maximize the disruption of a certain 

power system KPI given a pre-defined attack “budget”. 

The development and results associated to each of those building blocks and their integration are 

presented in detail in the following sections. 

Power System and KPIs 
This section describes the power system that was custom built in OpenDSS and used for testing various 

attacks on system components (switches, DERs, controllable loads, regulators, capacitor banks, and 

energy storage devices) through PyCIGAR. In addition, we discuss the identified KPIs that were used to 

quantify the success of attacks on the network.  

Our primary focus was on creating a realistic network that allows us to explore system level attacks which 
adversely affect the system behavior in the short (order of seconds) to medium term (order of minutes). 
These attacks can be a result of a single compromised component or a coordinated attack on multiple 
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components that leads to undesirable network behavior. After discussing with NRECA and LBNL we chose 
to modify the standard IEEE 123 bus network for our case studies; see Figure 1 - Modified IEEE 123 multi-feeder topology. Feeder 
1 is shown above and Feeder 2 is setup to mirror Feeder 1. The color-coded boxes show the location of the inter-feeder ties that 

are normally open. 

 

Figure 2 - State of Charge (SOC) for BESS at buses 33, 48, and 71 over the entire time series of load and PV data. Each battery is 
equipped with a centralized valley filling and peak shaving controller that kicks in when specified thresholds are exceeded. The 

BESS neither charges nor discharges during periods where the substation active power is between the valley filling and peak 
shaving thresholds or if minimum/maximum allowed SOC is reached.   All batteries are initialized here with a 50% SOC. 

 

Figure 1. The IEEE 123 bus feeder contains four voltage regulators, shunt capacitor banks, and multiple 

switches. The main modifications were as follows: 
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• First to capture a realistic distribution substation we included one additional feeder at the 

substation. The additional feeder was setup to mirror the standard IEEE 123 bus feeder1; see 

Figure 1 

• Second, we added normally open ties between the two feeders – one between buses 152 in 

feeder 1 and 2, one between buses 300 in feeder 1 and 2, and one between buses 135 in feeder 

1 and 2; see Figure 1 

• Third we added PV (time-series) on almost every node to simulate a feeder with high penetration 

of renewables. The time-series covered second based data for a 4-hour window from 

approximately 9:00 a.m. – 1:00 p.m. For testing, the most interesting times of the day are in the 

morning 9:00 a.m. – 10:00 a.m. when loading is high and between 12:00 p.m.-1:00 p.m. when PV 

output is high. 

• Fourth we added three large battery energy storage systems (BESS) that were randomly dispersed 

in the network on buses 33, 48 and 71 in feeders 1 and 2. The control logic was setup to perform 

peak shaving and valley filling functions from a centralized controller that was monitoring the 

substation active power in-feed. The valley filling function allows the BESS to charge when the net 

active power at the substation is below a specified threshold. Similarly, the peak shaving function 

was setup to discharge the BESS when the net active power at the substation crossed above a 

specified threshold. We performed extensive simulations to set the right values for valley filling 

and peak shaving based on the pre-defined load and PV profiles. In particular, the thresholds were 

set as 2600 kW for valley filling and 3000 kW for peak shaving. Note that in between the two 

threshold values [2600-3000] kW, the BESS is neither charging nor discharging; see Figure 2 and 

Figure 3. 

• Fifth we scaled the PV and load, respectively by 1.375 and 1 to simulate medium loading 

conditions. These scaling factors were chosen to allow inter-feeder topology reconfiguration over 

the entire time-series PV and load data without overloading the substation transformer, i.e., if 

the topology were to be reconfigured to bring Feeder 2 onto Feeder 1, then the substation would 

be heavily loaded, yet it would not cause overloading or severe undervoltage issues; see Figure 3.  

• Lastly, we enabled time control mode in OpenDSS and validated against PyCIGAR so that we can 

capture realistic local control actions from components such as regulators and capacitor banks. 

 
1 https://cmte.ieee.org/pes-testfeeders/resources/  

https://cmte.ieee.org/pes-testfeeders/resources/
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Figure 1 - Modified IEEE 123 multi-feeder topology. Feeder 1 is shown above and Feeder 2 is setup to mirror Feeder 1. The color-
coded boxes show the location of the inter-feeder ties that are normally open. 

 

Figure 2 - State of Charge (SOC) for BESS at buses 33, 48, and 71 over the entire time series of load and PV data. Each battery is 
equipped with a centralized valley filling and peak shaving controller that kicks in when specified thresholds are exceeded. The 

BESS neither charges nor discharges during periods where the substation active power is between the valley filling and peak 
shaving thresholds or if minimum/maximum allowed SOC is reached.   All batteries are initialized here with a 50% SOC. 
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Figure 3 - The apparent power (s_wo_batt), active power (p_wo_batt), and reactive power (q_wo_batt) at the substation 
(feeder 1 + feeder 2) without BESS and the apparent power (s_w_batt), active power (p_w_batt), and reactive power (q_w_batt) 

at the substation (feeder 1 + feeder 2) with BESS. The effect of the BESS charging and discharging cycles can be clearly seen on 
the net power in-feed at the substation; see also Figure 2 

KPIs for definition of successful attacks are described in detail in previous reports [1] and have since been 

updated based on discussions with NRECA and LBNL. Although some of these were only qualitatively 

defined before, we now have quantitative definitions for the key Tier 1 KPIs below: 

• Tier 1 

o Voltage imbalance (VI) 

▪ VI=max[max[(abs(Va-Vm), abs(Vb-Vm), abs(Vc-Vm)]/Vm] 

▪ Here Va, Vb, and Vc are the line-to-neutral voltage magnitudes for each phase 

on a given bus and Vm = (Va+Vb+Vc)/3. The inner max function is the maximum 

across all phases on a given bus, whereas the outer max function maximum 

across all buses in a network. 

o Substation power factor (SPF) 

▪ SPF=cos(arctan(qnetwork/pnetwork)), where qnetwork and pnetwork are respectively the 

net reactive and active power at the substation. 

o Combined VI+SPF KPI which is the initial choice for the optimization is defined as (1-

VI+SPF)/2. They were combined so that the higher the KPI the higher the impact of the 

attack. Therefore this can be directly used as a goal function for attack optimization. 

 

• Tier 2 

o Instability (oscillation) 

o Power delivery disruption (PDD), including 

▪ DER disconnection based on IEEE 1547 standard (PDD DER) 

▪ Disconnection due to overloading of lines/transformers 
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• Tier 3 

o Equipment useful life degradation 

o Power quality degradation (poor power factor or over/undervoltage conditions) 

The Voltage Imbalance and Substation power factor KPIs were normalized to be on scale of [0,1]. Attacks 

that minimize these KPIs, i.e., give values closer to 0 are considered better than ones that give values 

closer to 1. The combined VI+SPF KPI is similarly normalized on a [0,1] scale. The SPF KPI was simply the 

absolute value of the measured PF at the substation. The VI KPI was setup to capture the worst-case 

deviation from the average across all phases at a given bus. See Figure 4 for tracking of the tier 1 KPI’s 

over the first 10000 seconds of load and PV data. 

 

Figure 4 - SPF and the combine VI+SPF KPI over the first 10000 seconds of load and PV data 

It was decided not to pursue the Instability (oscillation) KPI since it would require a dynamic simulation of 

the power system under study or require that the oscillation is constantly forced based on repeated 

connection/disconnection of system components or controllers. Dynamic simulation mode is weak in 

OpenDSS and all other KPIs can be easily captured using a quasi-steady-state simulation. Similarly, the 

PDD and PDD DER KPIs were not explicitly considered due to the need to analyze and implement 

protection. Adding the relevant components that can be appropriately coordinated would require a 

detailed protection study. However, we are considering adding overcurrent protection on inter-feeder tie 

switches so that it is possible to perform topology reconfiguration attacks that cause overloading on lines 

and transformers. To simulate this use case, we will scale the PV and load profiles by a factor of 2.75 and 

2, respectively. Note that the scaling is done only to simulate a use case where an attacker can take control 

of multiple distribution tie switches to stack multiple feeders onto a substation feeder. A substation feeder 

may be designed to bring on one/two feeders without causing any overloading on lines or transformers. 

Otherwise, bringing on multiple feeders can lead to severe overloading that can then lead to severe 

under/over voltages issues causing protection to disconnect components or entire sections of the feeders. 

Based on NRECA feedback, Tier 3 KPIs were not explicitly considered. 
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PyCIGAR Attack Implementation 
This section describes how the PyCIGAR Framework was enhanced to incorporate additional attacks, 

how the interaction between PyCIGAR and those attacks is implemented and what effects the attacks 

can have on an example network.  

Attack Addon PyCIGAR Integration 
PyCIGAR represents devices of the power network through a hierarchical approach. On the top level is 

the device itself that provides the power set points to OpenDSS. Devices are connected to at least one 

controller, which defines the controls (e.g.: operation mode, maximum ramps, and others) that are used 

to determine setpoints on device level.  

During the period covered by this report, PyCIGAR was extended to include the following device classes: 

• PV Inverter Device • Battery Storage Device 

• Switch Device • Capacity Device 

• Regulator Device  

 

For each device there is a device class implementation as well as a controller class implementation. 

PyCIGAR devices may be controlled in one of two schemes. In the first control scheme, referred 

hereafter as local control, each device is associated to two controllers. One controls the device when it 

is not being attacked and the other one controls the device otherwise. In the second control scheme, 

referred hereafter as distributed control, one controller controls multiple devices and derives the 

required controls across all devices at the same time. Table 1 provides an overview of which device 

utilizes which control scheme. 

Table 1 - Control schemes for devices in PyCIGAR 

Device Control scheme 

PV Inverter Device Local control 

Battery Storage Device 

Distributed control 
Switch Device 

Capacity Device 

Regulator Device 

 

Depending on the control scheme the attack is performed differently. For the local control scheme the 

connection between controller and device is a 1-1 relation, therefore modification on the particular 

controller don’t influence other devices. For the distributed control scheme the controller cannot be 

modified based on a single device because this would impact the other devices associated with it. For 

this control scheme the controller will be disassociated with the device which is then associated with an 

alternative controller, referred hereafter as hacked controller. This hacked controller contains the 

implementation of all attacks which can affect a certain device. 

In order for attacks to be used within PyCIGAR while not interfering with PyCIGAR implementation it was 

decided that the Attack Addon will be reusing existing in PyCIGAR implemented controller and devices. 

The implemented classes of the AttackAddon  inherit the functionality from the PyCIGAR classes and 
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extend them with aspects needed for the attack. The inheritance tree is depicted in Figure 5Figure 5. 

Through inheritance, AttackAddon classes can operate both as normal controller /device as well as 

controller/ devices that are hacked. Additionally, the AttackAddon stays independent from the existing 

PyCIGAR implementation. The classes implemented in by the red team are referred to as AttackAddon.   

Base Device Class

PyCigar Device Class

Base Controller Class

PyCigar Controller Class

Attack Addon Device Class
Attack Addon Controller Class

Inheritance

Inheritance

Inheritance

Inheritance

BaseClass

control

PyCigarClass

PyCigarSpecificImplementation

BaseClass

Init

PyCigarClass

PyCigarSpecificImplementation

AttackClass

AttackSpecificImplementation

AttackClass

AttackSpecificImplementation

log

init

reset

set_control_setting

getAction

reset

 

Figure 5 - Inheritance Tree of PyCIGAR AttackAddon 

The creation and utilization of the readteam_addon_parser is discussed in detail in the previous report 

[2]. During the parsing process, in case of the utilization of the AttackAddon, the corresponding PyCIGAR 

device/controller classes are replaced by Attack Addon device/controller classes and every AttackAddon 

object will receive the information of whether or not the device will be attacked during the scenario 

simulation so that this information can be used to define its behavior. 

Attack Types 
As shown in Table 2, different attacks are implemented for different devices. The various attacks are 

discussed in detail below including their description, parameters, and testing.  

Attacks are defined based on a set of parameters. The utilization of attack parameters as well as their 

impact on the attack were first introduced in the previous report [2]. 

Testing of the attacks is performed utilizing a PyCIGAR model based on the IEEE 3 bus network. The 

model was adapted to include each device under test so that the impact of the different attacks could 

be assessed.  
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Table 2 - Device attack overview 

Device Attack Description 

PV Inverter Device 

Connect/Disconnect Disconnects the PV Device for the specified time  

VoltageBreakPoints Modifies the Volt/Var and Volt/Watt behavior 

Unbalanced Creates an unbalanced output across the 3 phases 

Battery Storage 
Device 

OperationMode Modifies the operation mode of the battery (e.g.: 
charge instead of discharge) 

PowerInjection Forces to discharge the battery with maximum 
power  

PowerConsumption Forces to charge the battery with maximum power  

Battery Settings Modifies the control parameters of the battery 
(e.g.: reduce the max ramp rate) 

Switch Device 
Open/Close (Topology) Changes the topology of the grid by operating two 

switches that create a new one  

Capacitor Device Curtailment Reduces the capacity of the capacitor bank  

Regulator device 

Change Settings Modifies the regulator settings to create 
unintentional regulator behavior 

RegulatorDeactivate Prohibits the regulator from executing controls and 
fixes is to a specific tap 

RegulatorProhibitControl Prohibits the regulator from executing controls 
ChangeTaps Changes the regulators tap  

 

Attack Test Scenario 
The IEEE3 network was used for testing the developed attacks. The configuration of the system is 

depicted in Figure 6. The components contain different load profiles autogenerated from PyCIGAR with 

Table 3 showing the initial conditions employed for simulations. 

Table 3 - Test scenario configuration 

Scenario component sizing 

Transformer 2500 kVA 

Loads 701 / 702 150 kW 

PV 701 / 702 100 kW 

Battery 701 / 702 10 kWh 

Loads 703 400 kW 

PV 703 300 kW 

Battery 703 100 kWh 



12 
 

Siemens Corporation Technology 
 

 

 

Figure 6 - IEEE-3 AttackAddon test network 

 

PV Inverter Device 
The PV Inverter control scheme is based on voltage break points. The control measures the voltage at 

the busbar and compares it to preconfigured voltages. Based on this comparison it is decided how the 

inverter operates. This control scheme (Figure 7) Figure 7models a representation of Volt/Var as well as 

Volt/Watt behavior as it is used to control Inverter and it previous reports and as shown in Figure 8. 

 

Figure 7 - Voltage Break Points control scheme 
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Figure 8 - Volt/Var and Volt Watt behavior characteristics [1] 

The VoltageBreakPoint attack modifies the configured breakpoints and therefore shifts the complete 

control scheme. 

The PV Inverter Connect/Disconnect attack represents the disconnection or reconnection of PV devices 

during operation. During the disconnection of the PV device, the device will not participate in any 

control scheme neither will it provide any power to the grid.  

Additional to the discussed PV Inverter attack an unbalance attack is implemented to create an 

unbalanced power injection across the 3-phases. 

Tests and results 

For the PV attacks the impact of the different attacks are provided in Figure 9. The power output at the 

substation is measured and the impact of the attacks are compared by running the same simulation first 

without attack (reference scenario) and afterwards with the different attacks at different timeslots 

(attack scenario) 

 

Figure 9 - Test results for Connect/Disconnect attack and PV VoltageBreakPoint attacks 
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For the test run the following attacks were executed: 

Attack Timestep Component 

Connect.Disconnect 100 - 150 

PV 703 

VoltageBreakPoint:  MaxReactive Power 200 - 250 

VoltageBreakPoint:  partial Reactive 300 - 350 

VoltageBreakPoint no Reactive 400 – 450 

VoltageBreakPoint: Reactive Usage 500 – 550 

VoltageBreakPoint NoActive 600 - 650 

 

Battery Storage Device 
The battery storage device has various parameters that can be modified with resulting impact in its 

operation. Attacks on parameters that can be modified are captured in the Battery Settings attack. 

Another attack type consists of changing the operating mode of the battery. These attacks are captured 

in the Operation Mode attack. Table 4 presents the parameters associated to each attack. MaxCharge 

and MaxDischarge power temper with the battery settings by reducing the maximum rating to 20% of 

the original rating. Max Ramp rate allows the shorten the time till a battery is charging or discharging 

with full power. 

Table 4 - Battery setting and Operation Mode attacks 

Attack  Attacked parameters 

Battery Settings MaxCharge Power, MaxDischarge Power, Max 
Ramp rate 

Operation Mode Mode of operation  
(charge, discharge, standby) 

 

Additional to the Battery Settings and Operation Mode attacks, Power Injection and Power Consumption 

was also implemented. These attacks correspond to an operating condition which is not a normal state 

of the system, therefore it is more than a change in operating mode. They result respectively in 

discharging or charging of the corresponding batteries at maximum possible rate. Those can exceed the 

regular battery operation limits. 

Tests and results 

Per default batteries in PyCIGAR operate in a min max cycle, meaning they charge and discharge 

depending on their state of charge (SoC). For the reference simulation the batteries are all operating in 

charging mode. Through the simulation an attack is executed on battery connected to Bus 701 of the 

system that switches the battery from standby to charging to discharging operation. Figure 10 shows the 

impact of the operation change on the voltage. The yellow lines correspond to voltages from the 

reference scenario. In the initial time steps of Figure 10 the voltage of the reference scenario is lower 

than in the attack simulation. The battery is operating in charging mode for the reference scenario 

whereas it is operating in standby mode for the attack scenario. After the attack scenario switches the 

battery to charging mode the voltages are almost identical. At timestep 200 the battery is switched to 

discharging mode which results in an increased voltage across all busses within the network. Figure 11 
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shows the power provided to the system. When the battery is in standby mode or discharging the load 

on the system is lower than with a charging battery.  

 

Figure 10 - Voltage at all nodes for Battery attack 

 

Figure 11 - Power at Substation for Battery attacks 

Attacks on the battery settings depend on the scenario set up and sizing of the battery. The impact of 

battery setting attacks is limited in the scenario employed for testing. The system jumps to the 

maximum charging or discharging rate within 3 timesteps and a limitation of the maximum output 

power or power consumption would rather limit the impact on the grid. 
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Switch Device 
To change the topology of a running simulation, switches were introduced. Switch devices can represent 

both breakers and switches in power grid. Based on discussions with LBNL, islanding of parts of the grid 

is not within the scope of the attacks we would like to consider during testing. To prevent this behavior, 

switches always need to be paired together so that operating one switch automatically results in an 

operation of the paired switches to ensure a valid topology. The result of this concept is that through 

switching attacks, topologies within a scenario change and therefore the power quality across the 

network. As the control scheme for this attack is a distributed control scheme, a new controller will be 

generated for the attack and associated with the correspondent devices that will be attacked.  

Tests and results 

For testing the attack on the provided IEEE3 network the Switch 1 and 2 in Figure 6 are operated at the 

same simulation step to change the topology of the network. Figure 12 shows that for the time of the 

attack the voltage is increased. Through the attack bus 703 is directly connected to bus 701 whereas bus 

702 does not have a connection to bus 703 anymore. Through this reconfiguration the voltages in the 

network are shifted and, in this case, they increase at both locations.  

 

Figure 12 - Switch of the topology of the grid 

Capacitor Device 
Capacitors are deployed to improve the voltage in the grid. They can be controlled to connect more or 

less capacitance for this purpose. Attacks to the capacitor device focus on this functionality therefore 

impacting grid voltage. 

Tests and results 

Capacitor attacks are highly dependent on the sizing of the capacitor. Originally no capacitors are 

deployed for the IEEE 3 network. Therefore, the IEEE 123 network was used to test the functionality. The 

attack limits the capacitor reactive power output to 1% of its original value. Figure 13 shows that impact 

of the limitation of the capacitor at node 88 on the grid. The capacitor was originally providing 50kVAr 
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and after the attack provides only 0.5 kVAr to the grid. Therefore, the voltage at node 88 drops. The 

attack can lead to under voltages at nodes that are attacked or to imbalances in the system if the 

capacitor is not connected to all three phases. 

 

Figure 13 - Capacitor attack in IEEE 123 Node network 

Regulator Device 
Power transformer and line transformer devices are all represented by the regulator device class. 

Regulator devices’ duty is to provide voltage quality assurance for the grid. Attacks on regulators are 

used to change the settings and therefore the operation characteristics of the regulator. Table 5 

provides an overview of all implemented attacks which affect regulator devices.  

Table 5 - Regulator attacks 

Regulator attacks Description 

ChangeTaps: MaxTapNumber Changes the tap to the highest available tap 
number of the regulator 

ChangeTaps: MinTapNumber Changes the tap to the lowest available tap 
number of the regulator 

ChangeTaps: ZeroTapNumber Changes the tap to the neutral tap 

RegulatorDisconnect Changes the tap to the neutral tap and does not 
allow it to be changed in the future 

RegulatorProhibitControl Leaves the tap as is and does not allow it to be 
changed in the future 

ChangeSettings: TapDelay Changes the delay time after which tap changes 
occur 

ChangeSettings: IsReversible Enables/Disables reverse power flow control of 
the regulator 
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Tests and results 

Attacks to change the taps have been tested. Figure 14 shows the results of the simulation. In the first 

the tap is set to the minimum which resulted in a voltage decrease across the complete network. In the 

initial stage of the attack an oscillation is introduced due to the change of the tap. From timestep 200 to 

300 the tap is changed to neutral. This attack corresponds to the reference scenario where the tap is in 

neutral for the complete simulation time. At timestep 300 the tap is set to the maximum. This results in 

another oscillation and an increased voltage across the simulation network. The attacks demonstrate 

that regulator attacks can have an impact of the voltage across the complete power grid. 

 

Figure 14 - Regulator attack to change Taps from Min to Zero to Max 

The attacks RegulatorDisconnect, RegulatorProhibitControl and ChangeSettings do not have any impact 

on the simulation scenario. RegulatorDisconnect changes the tap to neutral position which is the 

operation position of the tap in the simulation. RegulatorProhibitControl prohibits the control of the 

taps from the moment of the attack and does not have an impact since the taps are not changed in the 

simulation. ChangeSettings are attacks that depends on the set up and control scenario of the 

simulation.  

Effect of Attacks in Simulation 
The various attacks shall be used to create scenarios where they disrupt power grid operation and AI-

based countermeasures developed by other project team members are employed with the goal of 

keeping operation as close as possible to normal. To specify which attacks shall be employed at each 

scenario, additional information is specified as described in the sections Power System and KPIs, Error! 

Reference source not found., and Computer Network Topology. Table 6 shows which KPIs are impacted 

by each attack (refer to KPI definitions in section Power System and KPIs). It also presents whether each 

one of them can be executed by means of network-based attacks or only through direct access to the 

device, which is taken into consideration during attack optimization. This information was defined based 

on discussions with the utility partner in the project (NRECA). 
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Table 6 - Connection between attacks, KPIs and cyberattack 

 

Attack Optimization Methodology and Testing 
The starting point of the attack optimization methodology is the hierarchy of possible adversary actions 

previously defined by the Red Team [1]: 

1. Exposure: Actions associated with getting access to a certain device. This category comprises 

both entry points for the attacks and actions such as lateral movement where an attacker gets 

access to a device from another one. For entry point cases this may comprise factors such as 

physical security. Once an exposure action is performed on a certain device, the attacker has 

access to perform exploits as described below. 

2. Exploitability: Actions related to exploiting the system to be able to alter its behavior. Exploits in 

this context can give the adversary access to other connected devices or to end effect actions as 

described below. 

3. End Effect (previously referred to as “Attack”): Those are actions which can be performed by the 

adversary which have impact on the power grid operation. Such actions have a corresponding 

counterpart in the power grid simulation model employed for optimization which enables the 

evaluation of the impact of the attack. 

This hierarchy was also extended to consider network-based attacks. In this case, the hierarchy of 

possible actions is simplified to comprise only categories #1 and #3, assuming that once the adversary 

has access to a network communication link he can already perform end effect actions through 

mechanisms such as man-in-the-middle, false data injection and flooding. Another concept which is 

relevant to the consideration of network-based attacks is the differentiation between physical links and 

logical links. Figure 15 presents an illustration of four devices (control center, router, regulator1 and 

inverter3) and their interconnections in terms of physical links (solid lines) and logical links (dashed 

arrows). Physical links as the name states, correspond to the physical network connections. Logical links 

Attack Remote accessible KPI 

PV: Connect/Disconnect Yes PDD DER 

PV: VoltageBreakPoints Yes PF, PDD (DER), VI, Instability 

PV: Unbalanced Yes VI 

Battery: OperationMode Yes PF, PDD (DER), Instability 

Battery: PowerInjection No PF, PDD (DER), Instability, VI 

Battery: PowerConsumption No PF, PDD (DER), Instability, VI 

Battery: Battery Settings Yes PDD (DER), VI 

Switch: Open/Close (Topology) Yes PDD (DER), VI, PF, Instability 

Capacity: Curtailment Yes Instability, PDD (DER) 

Regulator: ChangeTaps Yes PDD (DER), VI, Instability, VI (if 
single phase connected) 

Regulator: Change Settings Yes PDD (DER), Instability, VI (if 
single phase connected) 

Regulator: Regulator deactivate Yes PDD (DER), Instability, VI, (if 
single phase connected) 

Regulator:  RegulatorProhibitControl Yes PDD (DER), Instability, VI 



20 
 

Siemens Corporation Technology 
 

connect devices which exchange information that is relevant for the power systems operation. In the 

figure, both regulator1 and inverter3 exchange information with the control center, therefore they are 

connected by means of logical links. These communications are performed through router, so there are 

physical links which correspond to those connections. Router is not a producer or consumer of 

information in this context, therefore it is not included in logical links. Each physical link may be 

associated to multiple logical links and each logical link may be associated to multiple physical links. 

Attack costs are based on the physical link, e.g. the effort required to get physical access to a certain 

connection will depend on the physical link characteristics, such as location. Attacks on the other hand 

are defined based on logical links, e.g. a network-based attack affecting the communication between 

the regulator1 and control center (logical link) could happen either in the physical link between 

regulator1 and router or between control center and router and the effect of the attack should be the 

same in both cases. 

 

Figure 15 - Illustration of physical and logical network links 

Another important building block is the cyberattack information layer, corresponding to the use of 

NetJSON format to represent computer network information associated to the power grid as previously 

defined by the Red Team [2]. This includes computer network devices and their interconnection and also 

information about all possible action an attacker can take associated to each device and network link in 

each category as presented above. The main information associated to each action is its cost which 

corresponds to a numerical value that quantifies the effort associated to that action. For each analysis 

an attack budget is defined as the limit of cumulative effort an adversary can employ during an attack. 

This is employed as a constraint during optimization. 

The diagram in Figure 16 presents a high-level view of the optimization process. An AI-based sequential 

decision-making optimization solver based on the Monte Carlo Tree Search (MCTS) method interacts 

with the cyberattack information layer to identify potential actions the adversary can take and runs the 

power grid simulation in PyCIGAR to identify what the consequences of the adversary actions are in 

terms of impact to selected key performance indicators (KPIs). A certain KPI or set of KPIs must be 

selected a priori so that the optimization is performed in order to maximize their disruption. Multiple 

analyses can be performed considering different KPIs. Another relevant input for the optimization is an 

attack budget corresponding to the total effort which can be performed during the attack. The attack 

ends when the budget ends. Multiple budget values can also be employed in order to consider a variety 

of attacker profiles. 
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Figure 16 - Attack Optimization 

 

During the optimization process, every adversary action affecting a device produces a state change. The 

diagram of Figure 17 presents how such state transitions are performed considering a fictitious “Device 

X”. Every transition marked with a dollar sign ($) indicates that the corresponding cost (effort) 

associated with the action is subtracted from the attack budget. Dashed arrows correspond to 

alternative paths (“Device X” accessed as the entry point and not from another device) or options which 

may not be available for all devices (End Effect actions are only available for devices which can affect the 

power system operation). The diagram of Figure 17 only shows the transitions and states associated to 

devices, but analogous transitions and operations are also performed considering the network links. 

 

Figure 17 - State transition performed during optimization 

The result of the optimization is a sequence of actions performed by the attacker and the resulting 

impact on the KPI. 
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Attack optimization tests have been performed using the same IEEE 3 bus network employed in other 

tests described in this report. The corresponding PyCIGAR model was employed for simulations. A 

fictitious network topology was designed for such tests and encoded in NetJSON as previously 

described. Figure 18 presents the visualization of such topology, which include 3 power system devices 

which correspond to the inverters (s701a, s702a and s703a) which control PV generation at each of the 

three buses. 

 

Figure 18 - Network topology employed for attack optimization testing based on IEEE 3 bus network. 

NetJSON was populated not only with the devices and connections but also with possible adversary 

actions corresponding to the three hierarchical levels presented above. Figure 19 presents and excerpt 

of the NetJSON definition corresponding to inverter s701a. It can be noticed that information of possible 

adversary actions is included for each of the three hierarchical levels (Exposure, Exploitability, End 

Effect). Each possible action is associated with a cost that quantifies the effort required by the adversary 

to perform it. This quantification does not need to have a specific meaning in absolute terms, it must 

only be consistent in a relative sense, when comparing costs associated with different tasks, i.e., tasks 

which require more effort must have higher cost.  
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Figure 19 - Excerpt of the NetJSON representation of the computer network. The part presented corresponds to one of the 
inverters. It can be noticed information about possible actions in each of the three hierarchical levels and corresponding cost 

(effort) 

Attack optimization was successfully tested based on the described inputs and simulation model. KPI 

employed was based on voltage imbalance. Table 7 presents the results of the optimization as a 

sequence of actions. Column “Device/Physical Link” presents the device or physical link which is the 

target of the attack. Physical link connecting “Device A” to “Device B” is presented as <Device 

A>__<Device B>. Column “Level” presents the hierarchy level of the action (Exposure, Exploitability or 

End Effect). Column “Action” presents the actual action taken. A network-based attack of type “Type” 

affecting the logical link connecting “Device X” to “Device Y” is presented as <Device X>__<Device 

Y>__<Type>. The last column presents the time required for computing the MCTS solution for the 

corresponding step. 



24 
 

Siemens Corporation Technology 
 

Table 7 – Attack optimization result consisting of a sequence of adversary actions. 

 

Referring to Figure 18, it can be noticed that the adversary takes a path from inverter s703a to s702a 

hoping to each device in between them. Other notable aspects of the results are as follows: 

• It can be noticed that the resulting attack path was chosen so that two inverters could be 

affected in a way that did not require reaching the control center. This is compatible with the 

costs definition as higher costs have been associated to the control center compared to other 

devices. 

• Computation time is in general reduced from one step to the next as the remaining attack 

budget is reduced after each step and therefore the number of action choices for the adversary 

is also reduced in most cases. 

It is also interesting to evaluate the results from one specific MCTS step. Figure 20 presents the tree 

resulting from MCTS solution of the initial step (entry point) and expanded according to the final 

solution. Blue circles correspond to states and green labels correspond to actions. Although the clutter 

precludes identification of many of the labels, it can be noticed that each action is associated with Q and 

N values which correspond respectively to the Upper Confidence for Trees (UCT) and the number of 

times that node was visited. Those are the main metrics associated to the selection of nodes for each 

MCTS iteration [3].  

# Device/Physical Link Level Action Computation Time

1 inverter_s703a exposure entry_point 6185.385823965073s

2 inverter_s703a exploi tabi l i ty exploi t_a 4807.120194196701s

3 inverter_s703a end effect pv_disconnect 3436.57035112381s

4 inverter_s703a exploi tabi l i ty exploi t_b 1952.0697228908539s

5 network_switch3 exposure from_connected 1891.1593968868256s

6 network_switch3 exploi tabi l i ty exploi t_b 2506.256336927414s

7 inverter_s703a__network_switch3 end effect inverter_s703a__controlcenter__fa lse_data_injection 2375.2099990844727s

8 inverter_s703a end effect volt_var_attack 1407.188632965088s

9 network_fi rewal l2 exposure from_connected 514.6099021434784s

10 network_fi rewal l2 exploi tabi l i ty exploi t_a 367.4212591648102s

11 network_switch2__network_fi rewal l2 end effect inverter_s702a__controlcenter__fa lse_data_injection 279.3138041496277s

12 network_switch2 exposure from_connected 98.53733587265015s

13 network_switch2 exploi tabi l i ty exploi t_a 95.5657970905304s

14 inverter_s702a exposure from_connected 76.0338180065155s

15 inverter_s702a exploi tabi l i ty exploi t_a 70.43082690238953s

16 inverter_s702a end effect pv_disconnect 56.886260986328125s
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Figure 20 - Tree resulting from MCTS solution to entry point action (step #1). The tree was expanded following the final solution 
from the optimization reaching up to step #11. Part of the entry point options is not shown in the figure. 

Computer Network Topology 
In this section, we describe the communication network topology defined for the modified IEEE 123 

multi-feeder described in section Power System and KPIs. We also describe the system architecture, 

components, design models and design considerations. 

Network Architecture  
A mesh topology is adopted to design a computer network for the IEEE 123 feeder system. A graph view 

of the defined computer network is presented in Figure 21. We factored in the following components 

while designing the network:  

• The size of the network – number of controllable loads, location of the power equipment, area 

of coverage, etc. 
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• The amount of data being transferred and exchanged 

• Security of the data 

• Connectivity requirements 

To achieve high availability, network components such as Routers and Edge devices (Network Switches) 

are placed at critical locations. The mesh network designed was inspired from Cisco’s Distribution 

Automation Feeder Automation Design Guide [5]. The document provides a comprehensive explanation 

of the entire end-to-end Smart Grid Field Area Network (FAN) solution along with case studies. 

 

Figure 21 - Graph view of designed computer network topology associated to the modified IEEE 123 model 
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After defining the network topology, the network was designed in an interactive tool called Architecture 

Generation (Arcgen), which is described below. The sequence of steps from definition of architecture in 

Arcgen to final NetJSON output is shown in Figure 22 and described below.  

1. First, we design the network architecture in the Arcgen tool 

2. The architecture is then exported as a JSON file and parsed. 

3. The missing links and devices are added to the file.  

4. The possible adversary actions and corresponding costs are identified and mapped to the 

devices. The action categories are those described in section Attack Optimization Methodology 

and Testing. Additional information about how the attack costs have been defined is provided in 

section Cyberattacks and Costs.   

  

 

Figure 22 - Sequence of steps to construct a NetJSON file 

  

 

Tools used to build a Network Topology: 
Following are the tools that were used in this work to construct the network topology and associate 

costs to the devices and their links. 

Arcgen 
To design a network topology, we leveraged a publicly available tool designed by Pacific Northwest 

National Laboratory (PNNL), called Architecture Generation (Arcgen) as shown in Figure 23. It is an 

interactive asset management tool that provides illustrative OT architectures based on Purdue reference 

model [9]. The tool can be used to conceptualize and plan OT networks. It is an intuitive drag and drop 

framework that supports various network components and devices used in OT Networks such as 

Routers, Firewalls, Sensors, Controllers, etc. Once the components are placed and connected in the 

appropriate levels, the design can be exported to a JSON file. This JSON file is used as the basis for 

creation of the NetJSON.  
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Figure 23 - Arcgen: Architecture Generation tool from PNNL that presents a user interface to design the network. The network 
architecture is imported as a JSON file. 

File Parser 
In order to ensure a proper NetJSON file is created, holding appropriate properties and adhering to the 

standard, the output JSON file of the Arcgen tool needs to be parsed. During this parsing, the missing 

links and devices are identified and added to the file. Every device and link is associated to attack cost 

properties in exposure and exploitability levels and also end effect if applicable. This is based on 

templates containing the information associated to each device type. The parser also identifies all logical 

links corresponding to each physical link, based on a definition of which devices exchange relevant 

information with each other. The functionality of Python package networkx [4] is employed to traverse 

the graph to determine such logical links. First, all the source nodes are identified and then the graph is 

traversed to identify the sink nodes and the paths connecting sources to sinks. The parser then 

associates each physical link to the corresponding logical links and to the possible attacker actions and 

properties. The result is a NetJSON with all required information. 

Cyberattacks and Costs 
In order to define realistic values for costs (effort) associated with specific cyberattacks, it was prudent 

to conduct offensive assessments on sample devices that resemble those of interest for the project and 

evaluate what effort-based costs are. Initial assessments allowed researchers to review the device and 

all aspects which were in scope for potential testing. This included potential hardware attacks, and over 

the wire or air attacks.   
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Attack methodology followed these standards in the cybersecurity industry [6]: 

• Reconnaissance 

• Initial Access  

• Internal Reconnaissance  

• Privilege Escalation / Lateral Movement  

• Maintaining Access  

Concerning the Power Grid devices selected for testing, their corresponding models are not mentioned 

here for confidentiality purposes, but they are of the following types:  

• Smart Meter  

• Solar Array w/AC Inverter 

• Capacitor Bank 

• Industrial Edge Device  

The following Attacker Profiles were considered: 

• Novice 

• Amateur 

• Pen-Tester 

• Hacktivist 

• State-Sponsored  

Offensive Actions Evaluated [7]:  

• MiTM Attacks 

• Firmware Attacks 

• Data Collection / Reconnaissance  

• Tampering  

 

Using the definitions listed above we were able to assess the devices from a perspective of our own 

experience and understanding of Power Systems and Cybersecurity. During most cybersecurity 

assessments, devices that utilize a microprocessor and links objects in memory to the physical world 

allow us as users to interact with them. From here as attackers, we can test the logic, and most 

importantly understand how the device was intended to work, this gives us an idea of how we are able 

to make the device work in a way it was not intended.  

An example of the research performed is identified in the Automatic Metering Infrastructure (AMI).  We 

aimed to understand the effort required to reverse engineer a Smart Meter that is equipped with a 

Communications Module to the point where we understood the functionality of the device and were 

able to start interacting with the firmware. Our intention here was to understand the level of effort 

required to create malware that can attempt to utilize the network created by the module.  
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Once we started to tamper with the device and inspect the PCB, we quickly noticed that UART pins were 

commonly named on the PCB. We attempted to connect to the UART interface but quickly found out the 

interface had been disabled. Since the microprocessor is a proprietary device, there is no published 

datasheet or schematic. We concluded that considerable effort would be required to reverse engineer 

this device further, ranking it accordingly in our data.  

However, we did not stop there, the meter is equipped with 200A remote disconnect device, that has a 

two-way transponder. This device utilizes a commercial microcontroller that has ~256B of Flash Memory 

and 128B of ram. With the intent to dump the contents of the microcontroller we used a Development 

Kit to interface with the microcontroller and dump the contents of its flash memory. Using the 

datasheet, we were able to understand the microcontrollers memory organization and dump the 

firmware. While we were able to reverse engineer and develop malware for this device, we had yet to 

determine a viable delivery mechanism. Since we are not looking to develop actualities, we can assume 

that delivery could be over-the-air updates or Rogue RF style attacks [8].  

Another example of analysis targeted a small commercial distributed energy resource (DER) system, 

consisting of solar panels, batteries, and controllers/inverters. As attackers we wanted to evaluate if it 

was possible to interfere with the equipment to disrupt generation.   

A potential attack approach became apparent when our research team noticed that the controller 

connected to a module that transmits MODBUS over the air in cleartext. MODBUS is a communication 

protocol commonly employed in this type of application. When such communication is restricted to 

isolated ports there is very little impact or ability to abuse the protocol. However, when this data is 

transmitted over the air to an application that can be used to manage the device, such link can be 

targeted by an attacker.  

This is exactly what we did, using a custom MODBUS MiTM proxy we intercepted the MODBUS TCP 

packets and modified the Function Code’s Coil Status, as illustrated in Figure 24. We were then able to 

manipulate the data received by the remote application to indicate that the generation was OFF when in 

fact it was ON, resulting in discharge of the batteries.  

 

 

Figure 24 – diagram representing the attack performed targeting the DER system. 
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The information gathered from the studies such as those described above has been used as the basis for 

definition of the adversary actions and corresponding costs employed for the attack optimization. 

Conclusion and Future Work 
This report presented the development of the five building blocks required for optimizing attacks so that 

they can be used to test RL-based cyberattack countermeasures. Those building blocks are: 

• Power System and KPIs 

• Attack implementation in PyCIGAR 

• Computer network topology 

• Cyberattacks and costs 

• Attack optimization methodology 

Next steps consist of employing these building blocks to perform actual attack optimization targeting the 

modified IEEE 123 multi-feeder network. 
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Introduction 
This addendum is a complement to the final project report submitted by Siemens Technology [1] 

corresponding to the Red Team efforts related to Subtasks 3.3, 3.4, 3.5, 3.6. This document describes the 

tasks performed by Siemens Technology as the Red Team for the SPADES project during the period 

between submission of the report (November/2022) and end of its no-cost extension period (June/2023). 

Siemens Technology work focused on two topics during this period: 

• Extended development and testing of the proposed attack optimization framework described in 

the report. 

• Support to NRECA for integration of attack simulation and power system key performance 

indicators (KPIs) to the Open Modeling Framework (OMF). 

More details of the related work are described in the following section. 

Tasks and Results 

Extension of the Attack Optimization Framework 
Work related to the attack optimization framework performed during the period relevant to this report 

comprised: 

1. Mathematical formulation of the modeling and optimization problem. 

2. Improved methodology for attack costs definition. 

3. Attack optimization tests based on the modified IEEE 123 network described in the report, 

including extensive exploration of the solution space based on supercomputing for 

benchmarking purposes. 

4. Preparation and submission of a paper describing the proposed attack optimization framework 

and related experiments. 

Items 2-3 above are presented in more detail below. The paper mentioned in item 4 is available as a pre-

print [2]. The mathematical formulation described in item 1 can be found in the paper. 

Improved Attack Costs Definition Methodology 
As presented in the report, each possible adversary action is classified in one of three categories: 

• Exposure 

• Exploitability 

• End Effect 

The improved methodology involves categories Exposure and Exploitability, as explained below. 

Exposure 

The Exposure category corresponds to the efforts required for accessing the target system either 

externally - from the internet or creating a physical security breach - or internally - by means of lateral 

movement. High costs for actions in this category could correspond to devices or systems that are hard 

to access and are well protected. Low costs on the other hand could result, for instance, from devices or 

systems that are directly connected to the internet with little or no protection. 
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Exposure costs are associated with factors such as network topology, access controls, and security 

posture. A subset of MITRE ATT&CK1 tactics, techniques and procedures (TTPs) can be mapped to this 

category. Some examples of this mapping include: 

• Network Scanning: An adversary may use network scanning to identify exposed systems or 

services that can be targeted for exploitation. 

• Phishing: An adversary may use phishing to trick users into providing credentials or clicking on 

malicious links, allowing the adversary to gain access to the network. 

Determining the exposure of an asset is a subjective evaluation that involves considering various factors. 

To compute costs associated to actions in the Exposure category, the following factors must be 

considered:  

• Network Accessibility (NA): This factor represents the effort required to gain network access to 

the target system. It considers factors such as network security controls, encryption, 

authentication mechanisms, and network segmentation. A device directly connected to the 

internet and an isolated system would correspond respectively to high and low NA scores. 

• Authentication Effort (AE): This factor represents the effort required to bypass or overcome 

authentication mechanisms to access the target system. It includes aspects such as the strength 

of passwords, multi-factor authentication, account lockouts, and other authentication-related 

defenses.  

• Privilege Escalation (PE): This factor represents the effort required to elevate privileges or gain 

higher levels of access within the target system. It relates to aspects such as privilege 

separation, access controls, least privilege principles, and the complexity of privilege escalation 

techniques. 

• Protection Level (PL): This represents the level of protection applied to the system. This may 

include firewall settings, antivirus software, or other cybersecurity measures. 

Effort scores are associated with the abovementioned factors to determine their relative significance in 

the exposure assessment. These scores are defined based on expert judgment by considering factors 

such as the potential impact of the vulnerability, likelihood of exploitation, criticality of the asset, and 

the system's operational requirements. The higher the weight, the more influential the factor 

determines the associated action cost. The final cost is obtained by the sum of the factor scores as 

presented in the equation below, where 𝜑 represents attack cost:  

𝜑𝑒𝑥𝑝𝑜𝑠𝑢𝑟𝑒 = 𝜑𝑁𝐴 + 𝜑𝐴𝐸 + 𝜑𝑃𝐸 +𝜑𝑃𝐿 

Each factor score has a range from 1 to 10, indicating their relative significance in determining the 

overall cost. 

Exploitability 

Actions in this category correspond to technical vulnerabilities that can be exploited by the adversary. 

Such actions may be associated, for instance, with software vulnerabilities and misconfigurations. The 

corresponding costs reflect the complexity associated to exploiting the system to be able to execute the 

attack. High costs associated to an action in Exploitability category could correspond to a need for 

 
1 https://www.mitre.org/focus-areas/cybersecurity/mitre-attack  

https://www.mitre.org/focus-areas/cybersecurity/mitre-attack


5 
 

Siemens Corporation Technology 
 

specialized knowledge or even the need for a new zero-day exploit. Low costs on the other hand may be 

associated with known exploits that are easy to use. A subset of MITRE ATT&CK TTPs can also be 

mapped to this category. This includes the following: 

• Exploit Public-Facing Application: An adversary may exploit vulnerabilities in public-facing 

applications, such as web applications or email clients, to gain access to the network. 

• Remote Command Execution: This technique involves an adversary remotely executing 

commands on a targeted industrial control system. By exploiting vulnerabilities or leveraging 

authorized remote access, the adversary gains control over the system and executes malicious 

commands to manipulate or disrupt its operation. 

• Rogue Master: Adversaries have the capability to establish a rogue master that takes advantage 

of control server functionalities to communicate with outstations. This rogue master can be 

utilized to send control messages that appear legitimate to other control system devices, 

resulting in unintended impacts on processes. 

To compute the costs for tasks in the Exploitability category, we employ the Common Vulnerability 

Scoring System (CVSS)2. The Base metric group represents the inherent qualities of a vulnerability that 

remain consistent regardless of time or user environments. This group comprises two sets of metrics: (i) 

the Exploitability metrics and (ii) the Impact metrics. The Exploitability metrics capture the ease and 

technical methods involved in exploiting a vulnerability. These metrics represent the attributes of the 

vulnerable component itself, formally known as the vulnerable entity. Exploitability metrics comprise 

four components – Attack Vector, Attack Complexity, Privileges Required, and User Interaction. These 

metrics align with our needs for calculating the attack budget. The attack budget is then defined as 

follows:  

𝜑𝑒𝑥𝑝𝑙𝑜𝑖𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦 = 100 ∙ 𝑒4−𝐸𝑆 

Where ES corresponds to the exploitability score from CVSS which ranges from 0.1 to 4 (valid for CVSS 

version 3.1 and later). This is the cost to launch an attack, considering resources like time, personnel, 

and technology, without any specific vulnerability in mind.  

Attack Optimization Tests 
Attack optimization tests were performed based on the developments described in the report:  

• The power system simulation model consists of a modified IEEE 123 network implemented in 

OpenDSS/PyCIGAR. This includes all types of devices and corresponding attacks described in the 

report. 

• The VI+SPF KPI was employed, corresponding to a combination of voltage imbalance and 

substation power factor. 

• All required cybersecurity information including computer network topology and information on 

each device was created based on the NetJSON format. This includes information about all 

possible adversary actions associated to each device or network link with their corresponding 

category and cost.  

 
2 https://www.first.org/cvss/  

https://www.first.org/cvss/
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• Monte Carlo Tree Search (MCTS) is employed for optimization based on an implementation 

developed using the Julia programming language. 

As a basis for evaluation of the quality of results, a large number of attack scenario samples were 

generated and evaluated for computation of the corresponding reward using a node from the 

Lawrencium super computing cluster comprising an Intel Xeon Gold 5218 processor with 32 cores and 

1584GB of RAM. The same logic and constraints applied in the optimization were employed for 

generation of these samples. The attack budget considered is also the same as the experiments. All 

cores of the computing node were employed to generate the samples and memory sharing mechanisms 

were applied to minimize the repetition of samples in separate processes. A total of 504 wall-clock hours 

were employed for such processing, producing 504217 attack scenario samples and the corresponding 

reward values. An empirical cumulative distribution function (ECDF) based on the reward samples is 

used to evaluate the performance of the attack optimization experiment results, indicating the 

percentage of samples that produce rewards that are lower than the one under analysis. Such 

percentage will be referred to as 𝑝𝐶𝐷𝐹 hereafter. 

Optimization experiments have been performed on a computer running Ubuntu 18.04 operating system, 

comprising Intel Xeon Silver 4210 processor and 187GB of RAM. Table 1 presents the results. All tests 

were performed considering the same attack budget and MCTS configurations. The durations presented 

in the table were normalized for a fair comparison as simulations performed later benefit from stored 

results produced by previous tests. It can be noticed that all results correspond to high 𝑝𝐶𝐷𝐹. Most 

results are within 0.951 and 0.984 with one exception in terms of lower value (0.931 in scenario #6) and 

another corresponding to a high value (>0.999 in scenario #4). It can also be noticed from the results 

that increasing the number of iterations has an expected impact in duration, but it does not seem to 

impact 𝑝𝐶𝐷𝐹. The possible explanation is that all values tested for the number of iterations are the same 

order of magnitude and it would require order of magnitude increases in this number to obtain 

systematic improvements. Such order of magnitude increase would be feasible by applying some 

approaches described below in future work. 

Table 1 - Attack optimization experiments and results 

 

As an illustration of the adversary steps associated to those attack scenarios, below is a description of 

the steps yielded in scenario #3 which corresponds to the best 𝑝𝐶𝐷𝐹 in the table: 
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• Adversary uses as entry point (Exposure category) a network link connecting two routers which 

contain communication from multiple controllers but is exposed in the field and not behind a 

firewall. This can be considered a good trade off in terms of attack cost and impact. 

• Once the link is accessible, the adversary performs false data injection attacks (End Effect 

category) affecting four controllers corresponding to three controllable loads and one PV 

inverter. 

Support to NRECA in Integration of PyCIGAR Functionalities to OMF 
As described in the report, Siemens Technology has implemented additional functionality into PyCIGAR 

including a variety of power system devices and associated attacks, means for configuring those attacks 

as part of an attack scenario, and definition of new KPIs. 

NRECA is integrating PyCIGAR as part of their OMF. We have supported them in including the 

functionality developed by Siemens Technology by means of explanations and discussions about the 

implemented code and generation of sample data representing attack scenarios that could be used for 

testing. 

Conclusion and Future Work 
This Addendum to the final Red Team report corresponding to subtasks 3.3, 3.4, 3.5 and 3.6 presented 

the tasks developed between the submission of the report and the end of the project considering its no-

cost extension until June/2023. Tasks developed included: (i) enhancements of the developed attack 

optimization methodology making the definition of attack costs more systematic and connected to well 

accepted cybersecurity practices; (ii) experiments to test the methodology based on the modified IEEE 

123 model and corresponding computer network and cyberattack definitions described in the report; (iii) 

support to NRECA in the integration of novel functionality to OMF. 

 

Results obtained from the attack optimization experiments presented promising results, which achieved 

the 93rd percentile in all cases and the 95th percentile in all but one case. Over 500000 attack scenario 

samples generated and run through the simulation for reward calculation using the Lawrencium 

supercomputer cluster have been employed as baseline for this assessment. 

 

One of the key aspects that limit the use of the proposed methodology is computational performance as 

it relies on the simulation for calculation of KPIs which are used as rewards for optimization. Considering 

the MCTS solution, one clear possibility to explore consists of parallelizing the calculations based on 

methods such as the one proposed by Liu et al. [3]. This kind of enhancement can be very desirable as it 

may provide benefits which are application agnostic. Heuristics can also be designed to speedup MCTS 

computations. 

An alternative possibility for reducing computation costs is the use of surrogate models to replace the 

original simulation, however this approach is in general very dependent on the application under 

consideration. It must be noticed that the possibilities described above are not mutually exclusive, hence 

they can also be combined for additional benefit. 

Another opportunity for future work is the integration between the attack optimization and training of 

the automatic mitigation, e.g. using the attack optimization to generate training data related to the most 

relevant cases to make sure those are considered during training of machine learning models. 



8 
 

Siemens Corporation Technology 
 

Finally, it is also valuable to work further on testing and improving the methodology itself. The pursuit of 

systematic means for the definition of costs and budgets so that they are less dependent on subjective 

evaluation by subject matter experts is a relevant topic to consider. The incorporation of extensively 

adopted cybersecurity resources such as MITRE ATT&CK and CVSS in such definitions, which is already 

part of the methodology, is one step in this direction. However further improvements in this aspect would 

facilitate additional applications of the methodology. 
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