Cyber-Physical Systems

Trusted CI, the National Science Foundation Cybersecurity of Excellence

The mission of Trusted CI is to improve the cybersecurity of NSF computational science and engineering projects, while allowing those projects to focus on their science endeavors. Sean Peisert is the Director- and PI-Designate of Trusted CI.

Privacy-Preserving, Collective Cyberattack Defense of DERs

This project aims to develop, apply, and test a technique for enabling collective defense of distribution grids with significant penetration of distributed energy resources (DER) and responsive loads, by leveraging a privacy-preserving method of data sharing without exposing raw data that might contain personally identifiable information (PII) or that might otherwise be considered national security information that could be leveraged by adversaries to more effectively compromise and potentially destabilize portions of the electric grid. It is funded by DOE CESER’s RMT program and is led by Sean Peisert.

Using Fuzz Testing to Detect Software Tampering

This project aims verify that software operating on arms control monitoring equipment is within agreed parameters. It is funded by the National Nuclear Security Administration Office of Defense Nuclear Nonproliferation Research and Development and is led by Sean Peisert.

Provable Anonymization of Grid Data for Cyberattack Detection

This project aims to develop techniques for enabling data analysis for the purposes of detecting and/or investigating cyberattacks against energy delivery systems while also preserving aspects of key confidentiality elements within the underlying raw data being analyzed. The result will be a complete solution for anonymization of data collected from OT and IT networks pertaining to energy grid cyberattack detection that has been tested for its ability to retain privacy properties and still enable attack detection. It is funded by DOE CESER’s CEDS program and is led by Sean Peisert.

Securing Solar for the Grid (S2G)

This project aims to develop an understanding of security and performance requirements for the use of AI high solar / IBR / DER penetration scenarios, and also to develop an understanding of understanding power grid data confidentiality and privacy requirements. It is funded by DOE’s SETO office and is co-led by Sean Peisert and Daniel Arnold.

Inferring Computing Activity Using Physical Sensors

This project uses power data to monitor the use of computing systems, including supercomputers and large computing centers. It is led by Sean Peisert.

An Automated, Disruption Tolerant Key Management System for the Power Grid

This project is designing and developing a key management system to meet the unique requirements of electrical power distribution systems. It is funded by DOE OE’s CEDS program and is led by Sean Peisert.

Cyber Security of Power Distribution Systems by Detecting Differences Between Real-time Micro-Synchrophasor Measurements and Cyber-Reported SCADA

This project used micro-PMU measurements and SCADA commands to develop a system to detect cyberattacks against the power distribution grid. It was funded by DOE OE’s CEDS program and was led by Sean Peisert.

Application of Cyber Security Techniques in the Protection of Efficient Cyber-Physical Energy Generation Systems

The goal of this project was to design and implement a measurement network, which can detect and report the resultant impact of cyber security attacks on the distribution system network. It was funded by DOE OE’s CEDS program and was co-led by Chuck McParland and Sean Peisert.